en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。

引用本文: 龚良信,张德富,孙言,曹明轩,王先广. 2024. 赣南水头岩体岩石地球化学特征及地质意义[J]. 矿产勘查,15(10):1765-1780.

Citation: Gong Liangxin,Zhang Defu,Sun Yan,Cao Mingxuan,Wang Xianguang. 2024. Geochemical characteristics and geological significance of Shuitou Pluton in southern Jiangxi Province[J]. Mineral Exploration,15(10):1765-1780.

作者简介:

龚良信,男,1987年生,高级工程师,主要从事矿床勘查研究;E-mail: 1586899@qq.com。

通讯作者:

王先广,男,1962年生,正高级工程师,主要从事区域地质与矿产勘查研究;E-mail: 352252655@qq.com。

中图分类号:P581

文献标识码:A

文章编号:1674-7801(2024)10-1765-16

DOI:10.20008/j.kckc.202410001

参考文献
Amelin Y, Lee D C, Halliday A N, Pidgeon R T. 1999. Nature of the earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 399(6733): 252-255.
参考文献
Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse J L. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition[J]. Geology, 44(3): 231-234.
参考文献
Brewer T S, Åhäll K I, Menuge J F, Storey C, Parrish R. 2004. Mesoproterozoic bimodal volcanism in SW Norway, evidence for recurring pre-Sveconorwegian continental margin tectonism[J]. Precambrian Research, 134: 249-273.
参考文献
Cao M X, Wang X G, Zhang D F, Zhang Y W, Gong L X, Zhong W. 2024. Petrogenesis and REE mineralogical characteristics of Shitouping granites in southern Jiangxi Province: Implication for HREE mineralization in South China[J]. Ore Geology Reviews, 168, 106011.
参考文献
Champion D C, Chappell B W. 1992. Petrogenesis of felsic I-type granites: An example from northern Queensland[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 115-126.
参考文献
Chappell B W, White A J R. 1992. I and S-type granites in the Lachlan Fold Bell[J]. Earth Science, 83: 1-26.
参考文献
Chappell B W. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3): 535-551.
参考文献
Chen C H, Lee C Y, Shinjo R. 2008. Was there Jurassic paleo-Pacific subduction in South China?: Constraints from 40Ar/39Ar dating, elemental and Sr-Nd-Pb isotopic geochemistry of the Mesozoic basalts[J]. Lithos, 106(1/2): 83-92.
参考文献
Deng J F, Mo X X, Zhao H L, Wu Z X, Luo Z H, Su S G. 2004. A new model for the dynamic evolution of Chinese lithosphere: ‘Continental roots-plume tectonics’[J]. Earth-Science Reviews, 65(3/4): 223-275.
参考文献
Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033-2048.
参考文献
Gerdes A, Wörner G, Henk A. 2000. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: The Variscan South Bohemian Batholith[J]. Journal of the Geological Society, 157(3): 577-587.
参考文献
Gilder S A, Gill J B, Coe R S, Zhao X, Liu Z, Wang G, Yuan K, Liu W, Kuang G, Wu H. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China[J]. Journal of Geophysical Research, 101(B7): 16137-16154.
参考文献
Griffin W L, Belousova E A, Shee S R, Pearson N J, O’Reilly S Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 131(3): 231-282.
参考文献
Griffin W L, Wang X, Jackson S E, Pearson N J, O’Reilly S Y, Xu X, Zhou X. 2002. Zircon chemistry and magma mixing, SE china: In-situ analysis of hf isotopes, tonglu and pingtan igneous complexes[J]. Lithos, 61(3/4): 237-269.
参考文献
He Z Y, Xu X S. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to geodynamics of paleo-Pacific plate subduction[J]. Chemical Geology, 328: 208-221.
参考文献
Hsü K J, Sun S, Li J L, Chen H L, Pen H P, Sengor A M C. 1988. Mesozoic overthrust tectonics in south China[J]. Geology, 16(5): 418-421.
参考文献
Hu Z C, Liu Y S, Gao S. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399.
参考文献
Jiang H, Zhang D Y, Wang S W, Fu X, Ye L X, White N C, Zhou T F. 2021. Genesis of mafic microgranular enclaves in the Shaocunwu granodiorite, Southern China, and their implications: Evidence from zircon and whole-rock geochemistry[J]. Acta Geologica Sinica, 95(3): 761-779.
参考文献
King P L, Chappell B W, Allen C M, White A J R. 2001. Are A-type granites the high- temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite[J]. Australian Journal of Earth Sciences, 48(4): 501-514.
参考文献
King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, Southeastern Australia[J]. Journal of Petrology, 38(3): 371-391.
参考文献
Li Q, Zhao, K D, Palmer M R, Chen W, Jiang S Y. 2021. Exploring volcanic-intrusive connections and chemical differentiation of high silica magmas in the Early Cretaceous Yanbei caldera complex hosting a giant tin deposit. Southeast China[J]. Chemical Geology. 584, 120501.
参考文献
Li X H. 2000. Cretaceous magmatism and lithospheric extension in southeast China[J]. Journal of Asian Earth Science, 18(3): 293-305.
参考文献
Li X H, Li Z X, Li W X, Liu Y, Yuan C, Wei G J, Qi C S. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?[J]. Lithos, 96(1/2): 186-204.
参考文献
Li Y, Ma C Q, Xing G F, Zhou H W. 2015. The Early Cretaceous evolution of SE China: Insights from the Changle-Nan’ao Metamorphic Belt[J]. Lithos, 230: 94-104.
参考文献
Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 35(2): 179-182.
参考文献
Liu X, Liang H, Wang Q, Ma L, Yang J H, Guo H F, Xiong X L, Ou Q, Zeng J P, Gou G N, Hao L L. 2022. Early Cretaceous Sn-bearing granite porphyries, A-type granites, and rhyolites in the Mikengshan-Qingxixiang-Yanbei area, South China: Petrogenesis and implications for ore mineralization[J]. Journal of Asian Earth Sciences, 235: 105274.
参考文献
Loiselle M C, Wones D R. 1979. Characteristics and origin of anorogenic granites[J]. Geological Society of America Bulletin (Abstracts with Programs), 11: 468.
参考文献
Mao J W, Cheng Y B, Chen M H, Piraino. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 48: 267-294.
参考文献
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643.
参考文献
Middlemost E A K. 1985. Magmas and Magmatic Rocks[M]. London: Longman, 1-266.
参考文献
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3/4): 215-224.
参考文献
Patiño D A E, Johnston A D. 1991. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 107: 202-218.
参考文献
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956-983.
参考文献
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81.
参考文献
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 36(4): 891-931.
参考文献
Shao F L, Niu Y L, Liu Y, Chen S, Kong J J, Duan M. 2017. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications[J]. Lithos, (282/283): 33-44.
参考文献
Shinjo R, Kato Y. 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 54: 117-137.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. London: Geological Society Special Publications: 313-345.
参考文献
Sylvester P J. 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1/4): 29-44.
参考文献
Tao J H, Li W X, Li X H, Cen T. 2013. Petrogenesis of Early Yanshanian highly evolved granites in the Longyuanba area, southern Jiangxi Province: Evidence from zircon U-Ph dating, Hf-O isotope and whole-rock geochemistry[J]. Science China (Earth Sciences), 56(6): 922-939.
参考文献
Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution[J]. The Journal of Geology, 94(4): 57-72.
参考文献
Vervoort J D, Pachelt P J, Gehrels G E, Nutman A P. 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes[J]. Nature, 379: 624-627.
参考文献
Wang X S, Bi X W, Leng C B, Zhong H, Tang H F, Chen Y W, Yin G H, Huang D Z, Zhou M F. 2014. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China: Implications for metallogenesis and geodynamic setting[J]. Ore Geology Reviews, 61: 73-95.
参考文献
Wang Y J, Fan W M, Cawood P A, Li S Z. 2008. Sr-Nd-Pb isotopic constraints on multiple mantle domains for Mesozoic mafic rocks beneath the South China Block hinterland[J]. Lithos, 106(3/4): 297-308.
参考文献
Walter T R, Troll V R, Cailleau B, Belousov A, Schmincke H U, Amelung F, Bogaard P V D. 2005. Rift zone reorganization through flank instability in ocean island volcanoes: An example from Tenerife, Canary Islands[J]. Bulletin of Volcanology, 67(4): 281-291.
参考文献
Wedepohl K H. 1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7): 1217-1232.
参考文献
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407-419.
参考文献
White W M, Tapia M D M, Schilling J G. 1979. The petrology and geochemistry of the Azores Islands[J]. Contributions to Mineralogy and Petrology, 69(3): 201-213.
参考文献
Wu F Y, Jahn B M, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C, Sun D Y. 2003. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis[J]. Lithos, 66(3/4): 241-273.
参考文献
Xia R, Wang C M, Qing M, Li W L, Carranza E J M, Guo X D, Ge L S, Zeng G Z. 2015. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nangetan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys[J]. Lithos, 234: 47-60.
参考文献
Xiang Y X, Yang J H, Chen J Y, Zhang Y. 2017. Petrogenesis of Lingshan highly fractionated granites in the Southeast China: Implication for Nb-Ta mineralization[J]. Ore Geology Reviews, 89: 495-525.
参考文献
Zhang Y, Niu Y L, Hu Y, Liu J J, Ye L, Kong J J, Duan M. 2016. The syncollisional granitoid magmatism and continental crust growth in the West Kunlun Orogen, China-Evidence from geochronology and geochemistry of the Arkarz pluton[J]. Lithos, 245: 191-204.
参考文献
Zhang Z Y, Hou Z Q, Lü Q T, Zhang X W, Pan X F, Fan X K, Zhang Y Q, Wang C G, Lü Y J. 2023. Crustal architectural controls on critical metal ore systems in South China based on Hf isotopic mapping[J]. Geology, 51(8): 738-742.
参考文献
Zhou J, Jiang Y H, Xing G F, Zeng Y, Ge W Y. 2013. Geochronology and petrogenesis of Cretaceous A-type granites from the NE Jiangnan Orogen, SE China[J]. International Geology Review, 55(11): 1359-1383.
参考文献
Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26-33.
参考文献
曹明轩, 张德富, 张健仁, 龚良信, 钟文, 王先广. 2024. 赣南早古生代城坑岩体成因及其地质意义[J/OL]. 东华理工大学学报(自然科学版), 1-15. http: //kns. cnki. net/kcms/detail/36. 1300. N. 20240819. 1527. 002. html.
参考文献
岑涛, 李武显, 陶继华, 赵希林, 邢光福. 2017. 赣南版石—蔡坊火山岩年代学、地球化学和锆石Hf同位素特征及其地质意义[J]. 大地构造与成矿学, 41(5): 933-949.
参考文献
陈璟元, 杨进辉. 2015. 佛冈高分异I型花岗岩的成因: 来自Nb-Ta-Zr-Hf等元素的制约[J]. 岩石学报, 31(3): 846-854.
参考文献
丰成友, 黄凡, 曾载淋, 屈文俊, 丁明. 2011. 赣南九龙脑岩体及洪水寨云英岩型钨矿年代学[J]. 吉林大学学报(地球科学版), 41(1): 111-121.
参考文献
冯尚杰, 陈卫锋, 王洪作, 凌洪飞, 赵葵东, 陈培荣. 2020. 赣中地区晚中生代高分异A型花岗岩的厘定及其成因研究[J]. 地质学报, 94(4): 1227-1247.
参考文献
龚良信, 张德富, 张健仁, 王先广, 曹明轩, 吴德海, 唐梅华. 2024. 赣南石头坪重稀土矿床象洞岩体年代学、地球化学特征及成因分析[J/OL]. 稀土[J], 1-19. http: //kns. cnki. net/kcms/detail/15. 1099. TF. 20240627. 1023. 001. html.
参考文献
华仁民, 陈培荣, 张文兰, 陆建军. 2005. 论华南地区中生代3次大规模成矿作用[J]. 矿床地质, 24(2): 99-107.
参考文献
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 28(4): 481-492.
参考文献
李献华, 李武显, 李正祥. 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 52(9): 981-991.
参考文献
李献华, 赵振华, 桂训唐, 于津生. 1991. 华南前寒武纪地壳形成时代的Sm-Nd和锆石U-Pb同位素制约[J]. 地球化学, (3): 255-264.
参考文献
刘高峰, 王连训, 罗春林, 熊清华, 楼法生, 卢先锋, 刘永旭. 2023赣南遂川晚侏罗世幕式花岗质岩浆活动: 年代学、地球化学和Lu-Hf同位素约束[J]. 岩石学报, 39(8): 2489-2510.
参考文献
毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 23(10): 2329-2338.
参考文献
毛建仁, 陶奎元, 邢光福, 杨祝良, 赵宇. 1999. 中国东南大陆边缘中新生代地幔柱活动的岩石学记录[J]. 地球学报, 20(3): 253-258.
参考文献
彭琳琳, 陈友锋, 侯珊珊, 郑云飞. 2016. 江西湖岽矿区钨锡多金属矿地质特征及成因探讨[J]. 矿产勘查, 7(2): 282-290.
参考文献
邱检生, 肖娥, 胡建, 徐夕生, 蒋少涌, 李真. 2008. 福建北东沿海高分异Ⅰ型花岗岩的成因: 锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J]. 岩石学报, 24(11): 2468-2484.
参考文献
舒徐洁, 陈志洪, 朱延辉, 廖圣兵, 周博文, 李功振, 赵旭辰, 刘爽, 陈雷超. 2018. 赣南兴国东固高分异花岗岩成因及地质意义[J]. 地质论评, 64(1): 108-126.
参考文献
孙涛. 2006. 新编华南花岗岩分布图及说明[J]. 地质通报, 25(3): 332-335.
参考文献
陶继华, 李武显, 李献华, 岑涛. 2013. 赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究[J]. 中国科学: 地球科学, 43(5): 770-788.
参考文献
王丽丽. 2015. 华南赣州地区早古生代晚期—中生代花岗岩类地球化学与岩石成因[D]. 北京: 中国地质大学(北京).
参考文献
王崴平, 陈毓川, 王登红, 陈振宇. 2014. 赣南兴国县良村花岗岩锆石LA-ICP-MSU-Pb年代学、岩石地球化学与成岩机制研究[J]. 大地构造与成矿学, 38(2): 347-358.
参考文献
吴福元, 郭春丽, 胡方泱, 刘小驰, 赵俊兴, 李晓峰, 秦克章. 2023. 南岭高分异花岗岩成岩与成矿[J]. 岩石学报, 39(1): 1-36.
参考文献
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185-220.
参考文献
谢桂青, 胡瑞忠, 赵军红, 蒋国豪. 2001. 中国东南部地幔柱及其与中生代大规模成矿关系初探[J]. 大地构造与成矿学, 25(2): 179-186.
参考文献
徐文坦, 张雪辉, 张斌斌, 吕劲松, 孙建东, 张勇, 武彬. 2022. 赣东北地区福泉山岩体高分异S型花岗岩成因: 来自锆石U-Pb年龄、Hf同位素及地球化学的证据[J]. 地质通报, 41(4): 577-589.
参考文献
杨瑞栋, 童日发, 邵伟江, 曾跃. 2013. 赣南兴国旋卷构造区寻找富大矿床的思考[J]. 矿产勘查, 4(2): 121-130.
参考文献
杨玉元, 李宁波, 姜玉航, 赵旭. 2024. 离子吸附型轻稀土和重稀土矿床成矿母岩地球化学特征对比研究: 以关西和大埠花岗岩体为例[J]. 大地构造与成矿学, 48(2): 232-247.
参考文献
杨世文, 楼法生, 张芳荣, 丁沛勋, 曹员兵, 徐喆, 孙超, 冯增会, 凌联海. 2017. 赣南岐山岩体深熔-幕式岩浆活动: 来自锆石U-Pb精细年代学研究[J]. 地质学报, 91(4): 864-875.
参考文献
杨世文, 楼法生, 张芳荣, 吴正昌, 丰成友. 2019. 赣南晚侏罗世铝质A型花岗岩带及其意义[J]. 地质科技情报, 38(3): 12-29.
参考文献
于扬, 陈振宇, 陈郑辉, 侯可军, 赵正, 许建祥, 张家菁, 曾载淋. 2012. 赣南燕山期水头岩体的锆石铀-铅年代学研究及其含矿性评价[J]. 岩矿测试, 31(4): 736-744.
参考文献
张德富, 曹明轩, 龚兴, 龚良信, 钟文, 邱文江, 王先广. 2024a. 赣南石头坪重稀土矿床赋矿母岩地质特征及成矿意义探讨[J]. 东华理工大学学报(自然科学版), 47(4): 338-348.
参考文献
张德富, 王先广, 何涛, 曹明轩, 吕婷婷, 龚良信, 徐进. 2024b. 赣南加里东期重稀土矿赋矿母岩岩石成因及地质意义[J/OL]. 现代地质, 1-18. https: //doi. org/10. 19657/j. geoscience. 1000-8527. 2024. 095.
参考文献
张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 22(9): 2249-2269.
目录contents

    摘要

    赣南水头岩体传统上认为是加里东期花岗岩,其成因尚不明确。以水头岩体黑云母花岗岩为研究对象,进行岩石学、锆石U-Pb年代学、独居石U-Pb年代学和锆石Hf同位素研究。研究结果显示,水头岩体黑云母花岗岩LA-ICP-MS锆石、独居石U-Pb加权平均年龄分别为(151. 6±1. 80)Ma和(145. 3±1. 20)Ma;地球化学显示,水头岩体高硅和富碱,SiO2含量为72. 85%~76. 14%,全碱(K2O+Na2O)含量为7. 98%~8. 39%,富集Rb、Th、U、Nd等元素,亏损Ba、Nb、Sr、P、Ti等元素轻稀土相对富集((La/Yb)N=2. 20~9. 38),明显负Eu异常(δEu=0. 11~0. 40);锆石εHft)值为-6. 78~10. 04,二阶段模式年龄(TDM2 )为1832~1633。综合分析,水头岩体为高分异I型花岗岩,属晚侏罗世岩浆作用产物,起源于古元古代下地壳部分熔融,形成于弧后伸展构造环境,与岩浆沿政和—大埔深大断裂底侵有关。

    Abstract

    Shuitou Pluton in southern Jiangxi is traditionally considered to be Caledonian granite, and its genesis is still unclear. The biotite granite of Shuitou pluton is taken as the research object, and petrology, zircon U-Pb chronology, monazite U-Pb chronology and zircon Hf isotope are studied. The results show that the LA-ICP-MS zircon and monazite U-Pb weighted average ages are (151. 6±1. 80) Ma and (145. 3±1. 20) Ma. Geochemistry shows that Shuitou pluton is rich in silicon and alkali, with SiO2 content of 72. 85%-76. 14% and total alkali (K2O+Na2O) content of 7. 98%-8. 39%. It is enriched in elements such as Rb, Th, U, and Nd, and depleted in elements such as Ba, Nb, Sr, P, and Ti. LREE is relatively enriched ((La/Yb)N=2. 20-9. 38), with obvious negative Eu anomaly (δEu = 0. 11-0. 40). The zircon εHft) values range from -6. 78 to 10. 04, and the two-stage model age (TDM2 ) ranges from 1832 Ma to 1633 Ma. which is the product of partial melting of the lower crust in Mesoproterozoic. In conclusion, the Shuitou pluton is a highly differentiated type I granite, formed during Late Jurassic magmatic activity, originating from partial melting of the lower crust in the mid-Proterozoic era. It formed in a post-arc extensional tectonic environment and is related to magma intrusion along the Zhenhe-Dapu deep fault.

  • 0 引言

  • 赣南地区处于呈EW向展布的南岭构造带东段与NNE向展布的武夷山构造带西侧交汇处(杨瑞栋等,2013王崴平等,2014),区内岩浆作用强烈,加里东期、海西—印支期、燕山期花岗岩均有分布(图1a),并伴生有大规模钨、锡、钽、铌、稀土等稀有金属成矿作用(彭琳琳等,2016吴福元等,2023),其中稀土资源战略地位越来越高。近年来在安远石头坪矿区新发现的离子吸附型重稀土矿床,矿区内分布的象洞、碛肚山、水头、孙屋等花岗岩岩体是稀土矿床的重要母岩。20世纪末,赣南地质调查大队在本区开展了多幅 1∶5 万区域地质工作,基本查明了区内地层系统、构造轮廓、岩浆岩特征及矿产分布特征,但大多数岩体缺乏锆石 U-Pb测年资料,致使对岩体年代、成因认识不足。例如,笔者对矿区南部的孙屋岩体的年代学研究表明该岩体为加里东期侵入的岩体,并不是填图工作认定的燕山期岩体 (张德富等,2024a)。因此,对位于石头坪矿区北缘的水头岩体开展锆石、独居石U-Pb定年、锆石Lu– Hf同位素和全岩地球化学研究,以查明成矿母岩岩石类型、形成时代及岩石成因。

  • 图1 赣南及周边地区花岗岩分布图(a,据孙涛,2006)和水头岩体地质简图(b)

  • 1—新元古代桃溪岩组;2—南华—震旦系;3—寒武系;4—侏罗系;5—早白垩世火山岩;6—晚白垩世红盆沉积;7—加里东期花岗岩;8—海西期花岗岩;9—印支期花岗岩;10—燕山期花岗岩;11—碛肚山岩体;12—清溪岩体;13—水头岩体;14—采样位置;15—断层

  • 1 地质背景

  • 水头岩体位于赣州市会昌县右水镇和安远县天心镇交界处,主体位于会昌县境内,出露面积约 70 km2,前人资料认为该岩体成岩年龄为加里东期。笔者最近研究成果表明:研究区花岗岩主要由燕山期碛肚山岩体、清溪岩体和加里东期城坑岩体、孙屋岩体组成(图1b),并不是前人认为的加里东期水头岩体和加里东期三标岩体(杨世文等,2017;龚良信等,2023;曹明轩等,2024张德富等,2024b)。区域出露最古老地层为新元古界桃溪岩组,主要出露于近SN走向的会昌盆地两侧;南华系—寒武系出露较为连续,岩性为中厚层状浅变质杂砂岩夹薄层状板岩和少量硅质岩;侏罗系主要出露于研究区北部,为一套陆缘杂色碎屑岩沉积;早白垩世地层为一套中酸性火山碎屑岩和熔岩,主要见于岩背和蔡坊火山盆地,形成时代为早白垩世早期(岑涛等, 2017Li et al.,2021);晚白垩世红层盆地受区域 NNE走向断裂带控制明显(图1b)。

  • 水头岩体侵位于桃溪岩组中,主要岩性为中粗粒似斑状黑云母花岗岩,偶见粗粒二云母花岗岩。岩体主体呈肉红色,似斑状花岗结构、块状构造(图2a)。主要由碱性长石、石英、斜长石和少量黑云母组成,岩石整体发育弱黏土化和绢云母化。碱性长石以条纹长石为主,含量约占全岩 55%;斜长石多为双晶细密的钠长石(图2b),含量约占全岩 15%; 石英呈他形粒状,波状消光明显,约占全岩 28%;黑云母多绿泥石化。

  • 2 分析方法

  • 对中粗粒黑云母花岗岩(HC-2)进行锆石、独居石挑选、制靶和拍照,该项工作在廊坊市辰昌岩矿检测技术服务有限公司完成。锆石、独居石 U-Pb 定年在东华理工大学核资源与环境重点实验室完成。采用 Agilent 7900 ICP-MS 连接 GeoLasHD 激光剥蚀系统,锆石、独居石激光束斑直径分别为32 µm 和 16 µm,具体分析流程参考侯可军等(2009)。Hf 同位素测试分析在南京宏创地质勘查技术服务有限公司完成。仪器采用 MC-ICP-MS,束斑直径为 40 µm,具体分析流程参考Hu et al.,(2012)。

  • 全岩主、微量元素分析在澳实分析检测(广州) 有限公司完成。主量元素采用XRF完成,标样采用 GSR-1和 GSR-3,精度优于 5%;微量元素采用 ICP-MS完成,元素含量大于10×10-6 时,精度优于5%,元素含量小于 10×10-6 时,精度优于 10%。主、微量具体分析流程参考Jiang et al.,(2021)。

  • 3 测试结果

  • 3.1 锆石U-Pb年龄

  • 从水头岩体中选取 1 件样品(HC-2)进行锆石 U-Pb定年,测试结果见表1。绝大多数锆石呈无色和淡黄色,形态为自形柱状,长 80~220 μm,长宽比为1∶1~3∶1。在锆石阴极发光(CL)图像上(图3a),显示岩浆锆石所特有的韵律环带。

  • 锆石 Th含量为 60×10-6~598×10-6,U 含量为 99× 10-6~1549×10-6,Th/U 比值为 0.30~0.90,显示岩浆锆石特点。25个测点谐和度均大于 90%,在 U–Pb年龄谐和曲线图中206Pb/238U 年龄值相近(图4a),其加权平均年龄为(151.6±1.80)Ma(MSWD=1. 06,n= 25)(图4b),代表水头岩体的形成时代,为晚侏罗世。

  • 图2 赣南水头花岗岩样品宏观(a)和镜下(b)照片

  • Qtz—石英;Pl—斜长石;Kfs—钾长石

  • 图3 水头岩体锆石阴极发光图像(a)和独居石背散射图像(b)

  • 表1 水头岩体LA-ICP-MS 锆石U-Pb同位素分析结果

  • 图4 水头岩体锆石U–Pb 协和图(a)和加权平均年龄图(b)

  • 3.2 独居石U-Pb年龄

  • 从水头岩体中选取 1 件样品(HC-2)进行独居石U-Pb定年,测试结果见表2。绝大多数独居石形状不规则,长 50~120 µm,长宽比介于 1∶1~3∶1。背散射电子(BSE)图像显示多数独居石呈暗灰色且有裂隙,边部存在明显的熔蚀痕迹,少数独居石有明暗相间的分带结构(图3b),可能是由生长过程中U、 Th、Pb含量不均匀导致。

  • 独居石 Th 含量为 4951160×10-6~12254099× 10-6,U 含量为 275715×10-6~691052×10-6,Th/U 比值为 7.22~25.30。22 个测点中 11 号测点年龄偏大, 17 号测点谐和度低于 90% 而舍去,剩余 20 个测点均在谐和线或附近(图5a),其加权平均年龄为 (145.3±1.20)Ma(MSWD=1. 06,n=20)(图5b),代表水头岩体的形成时代,为晚侏罗世。

  • 图5 水头岩体独居石U-Pb协和图(a)和加权平均年龄图(b)

  • 3.3 岩石地球化学特征

  • 3.3.1 主量元素组成

  • 水头岩体主量分析结果见表3。SiO2 含量为 72.85%~76.14%,Al2O3 含量为 12.44%~13.14%, K2O 含量为 12.44%~13.14%,Na2O 含量为 2.72%~3.37%,全碱(K2O+Na2O)含量为 7.99%~8.39%, K2O/Na2O 为 1.48~1.94,TFeO 含量为 1.38%~2.49%,Mg# 指数为 12.81~27.72,分异指数(DI)为 86.85~94.84。在 TAS 花岗岩分类图解中(图6a),样品均落入花岗岩区域;在 SiO2-K2O 图解中(图6b),样品落入高钾钙碱性系列-钾玄系列;铝饱和指数(A/CNK)为 1. 04~1.19,在 A/CNK–A/NK 图解中(图6c),样品均落入过铝质区域;在 SiO2–FeO/(FeO+MgO)图解中(图6d),样品均显示铁质特征。哈克图解显示,SiO2与Al2O3、TFeO、TiO2、CaO和P2O5 呈负相关关系(图7a~e)。

  • 表2 水头岩体LA–ICP–MS 独居石U–Pb同位素分析结果

  • 3.3.2 稀土和微量元素组成

  • 水头岩体与碛肚山岩体具有相似的稀土元素和微量元素配分特征(图8)。稀土和微量元素分析结果见表2。 ΣREE 为 217.65×10-6~686.67×10-6, ΣLREE 为 125.84×10-6~443.84×10-6,ΣHREE 为 74.28×10-6~242.83×10-6,ΣLREE/ΣHREE 为 1. 05~3.20,(La/Yb)N为 2.20~9.38,δEu 值为 0.11~0.40。在稀土球粒陨石标准化图上(图8a),水头岩体整体显示为右倾型曲线,具有明显的负 Eu 异常,轻稀土元素一侧较陡,分馏明显;重稀土元素一侧较平坦。负Eu异常明显说明岩体结晶过程中斜长石、钾长石分离结晶作用较强,重稀土元素相对亏损可能与锆石、磷灰石、独居石等副矿物分离结晶作用有关。

  • 在微量元素原始地幔标准化图中(图8b),Rb、 Th、U、Nd 等元素相对富集,Ba、Nb、Sr、P、Ti 等元素相对亏损。Ba、Sr亏损暗示斜长石分离结晶或熔融残留(Patiño and Johnston,1991);Nb、P、Ti亏损可能与金红石、磷灰石、钛铁矿的分离结晶有关。Sr 含量为 27. 00×10-6~147. 0×10-6,Yb 含量为 4.35×10-6~13.60×10-6,为华南低 Sr 高 Yb 型花岗岩,表明岩体形成于低压(<0.8 GPa)、深度较浅(<30 km)的地壳减薄大地构造背景(张旗等,2006)。

  • 3.4 锆石Lu-Hf同位素组成

  • 在样品 HC-2 锆石 U-Pb 定年打点部位进行 15 个点的 Hf 同位素分析,分析结果见表3。锆石176Yb/177Hf 和176Lu/177Hf 比值分别为 0. 022590~0. 044477 和 0. 000740~0. 001446,176Lu/177Hf 比值均小于 0.02,说明放射性 Hf 元素积累量少,因此初始176Hf/177Hf 比值代表锆石形成时的176Hf/177Hf 比值 (吴福元等,2007)。fLu/Hf值为 0.96~0.98,明显小于铁镁质地壳的 fLu/Hf=-0.34(Amelin et al.,1999)和硅铝质地壳的 fLu/Hf=-0.72(Vervoort et al.,1996),因此,二阶段模式年龄可代表源区物质从亏损地幔抽取的时间。

  • 表3 水头岩体主量元素和微量元素分析结果

  • 注:主量元素单位为%,微量元素单位为10-6;A/CNK=n(Al2O3)/n(CaO+Na2O+K2O);A/NK=n(Al2O3)/n(Na2O+K2O);δEu=ω(Eu)N/(ω(Sm)N× ω(Gd)N1/2TZr=12900/(2.95+0.85M+lnD(Zr)), M=(2Ca+K+Na)/(Si×Al),D(Zr)=496000/全岩锆含量。

  • 图6 水头岩体岩石分类图解(碛肚山岩体数据来源于Cao et al.,2024;张德富等,2024,下同)

  • a—TAS花岗岩分类图解(底图据Middlemost,1994);b—SiO2-K2O图解(底图据Peccerillo and Taylor,1976Middlemost,1985);c—A/CNK-A/ NK图(底图据Maniar and Piccali,1989);d—SiO2-(TFeO/TFeO+MgO)图解(底图据)

  • 锆石176Hf/177Hf 比值为 0.282401~0.282488,Hf 同位素成分比较均一,加权平均值为 0.282442,对应的 εHft)值为-6.78~10. 04,平均值为-8.50(图9a),二阶段模式年龄为 1832~1633 Ma,平均值为 1738 Ma。

  • 4 讨论

  • 4.1 岩浆岩形成时代

  • 华南燕山期经历了 3 次大规模成矿事件,燕山早期的第一阶段180~170 Ma,该阶段以赣东北和湘东南Cu、Pb-Zn、Au矿化为主;燕山中期的第二阶段 150~139 Ma,该阶段以南岭及相邻地区 W、Sn、Nb-Ta 矿化为主;燕山晚期的第三阶段 125~98 Ma 以南岭地区 Sn、U 矿化和东南沿海地带 Au、Cu、Pb-Zn、 Ag 矿化为主(华仁民等,2005)。水头岩体在 1∶20 万于都幅中将其形成年龄定为加里东期,于扬等 (2012)测得锆石U-Pb年龄为(142.7±0.6)Ma,本次得到锆石、独居石 LA-ICP-MS U-Pb 定年结果分别为(151.6±1.80)Ma 和(145.3±1.20)Ma,与赣南东固岩体(152±2)Ma(舒徐洁等,2018)、弹前单元和紫阳单元复式花岗岩体 148.7~155.4 Ma(刘高峰等, 2022)、永丰岩体 154 Ma(杨世文等,2019)、龙源坝 —澄江黑云母花岗岩(156.7±1.2)Ma(陶继华等, 2013),隆市岩体 157~154 Ma(杨世文等,2019)、大埠岩体(155.3±0.7)Ma(杨玉元等,2024),大乌山岩体157~155 Ma(冯尚杰等,2020)、良村岩体(150.5± 0.9)Ma(王丽丽,2015),九龙脑岩体(155.8±1.2) Ma(丰成友等,2011)基本一致,表明赣南地区晚侏罗世经历了一次强烈的岩浆活动,确定水头岩体为晚侏罗世花岗岩。

  • 图7 水头岩体哈克图解

  • 图8 水头岩体稀土元素球粒陨石标准化图(a)和微量元素原始地幔标准化图(b)(标准化数值据Sun and McDonough,1989

  • 4.2 岩石类型

  • 华南晚侏罗世花岗岩岩石类型长期存在争议,依据岩石成因可将花岗岩分为 I、S、M、A型(邱检生等,2008)。M型花岗岩由幔源基性岩浆分离结晶而成,自然界中分布极少(White et al.,1979)。I型花岗岩源区主要为火成岩,以角闪石为特征矿物,相对亏损 Sr、Nd、Hf 等同位素,较低的铝饱和指数 A/CNK<1.1,TFeO 含量较低,SiO2与 P2O5呈负相关关系(White et al.,1979Chappell,1999李献华等, 2007)。S型花岗岩源区主要为变沉积岩,以原生石榴石、白云母、堇青石为特征矿物,铝饱和指数 A/ CNK>1.1,P2O5含量大于 0.2%(Chappell and white, 1992Chappell,1999)。A 型花岗岩以非造山、碱性、相对贫水为特征(Loiselle and Wones,1979),矿物组合主要为石英、铁镁质暗色矿物和碱性长石,在主量元素上,富Si、Na、K,贫Al、Ca、Mg;在微量元素上,富集 Rb、Th、Nb、Ta、Zr、Hf 等元素,亏损 Sr、Ba、 Eu 等元素,将(Zr+Nb+Ce+Y)>350×10-6,10000Ga/Al >2.6作为 A型花岗岩判别标志,且 A型花岗岩形成温度较高(Whalen et al.,1987King et al.,2001)。

  • 图9 水头岩体tεHft)图解(a);二阶模式年龄分布图(b)(火山岩、花岗岩数据来源于岑涛等,2017Liu et al.,2022;张德富等,2024及作者未发表数据)

  • 表3 水头岩体锆石Lu-Hf同位素分析结果

  • 水头岩体 SiO2含量为 72.85%~76.14%,铝饱和指数 A/CNK 为 1. 04~1.19,分异指数(DI)为 86.85~94.84。在10000Ga/Al-(K2O+Na2O)图解和(Zr+Nb+ Ce+Y)-(K2O+Na2O)/CaO 图解中(图10a, b),样品绝大多数落入 I 或 S 型区域;在 10000Ga/Al-Zr 图解中,样品落于 I 或 S 型高分异花岗岩区域(图10c); Zr/Hf为13.94~33.29,Nb/Ta为3.91~9.79,在Zr/Hf-Nb/Ta图解中(图10d),样品均落于高分异花岗岩区域。在SiO2–P2O5图解中,SiO2与P2O5呈负相关关系(图7e),全岩锆饱和温度为728℃~784℃,平均值为 755℃,与 I 型花岗岩形成温度 764℃相近(图7g) (King et al.,1997)。综上所述,水头岩体应为高分异I型花岗岩。

  • 图10 水头岩体岩石类型判别图

  • a—10000Ga-(Na2O+K2O)图解(底图据Whalen et al.,1987);b—(Zr+Nb+Ce+Y)-(Na2O+K2O)/CaO图解(底图据Whalen et al.,1987); c—10000Ga-Zr图解(底图据Whalen et al.,1987);d—Zr/Hf-Nb/Ta图解(底图据Ballouard et al.,2016

  • 4.3 岩浆源区性质

  • 锆石具有较高的封闭温度和较强的抗风化能力,常作为 U–Pb 测年重要的副矿物,锆石受放射性176Lu同位素影响较小,锆石Hf同位素可很好的约束源区性质(Griffin et al.,2002)。水头岩体锆石 εHft)值均为负值,表明岩石起源于古老地壳的重熔,其 εHft)值主要集中于-10. 04~-7.22,较为集中,在tεHft)图解中,样品投影于1.7Ga地壳演化线附近,指示岩浆可能起源于同一源区,为古元古代下地壳部分熔融的产物。εHft)值与周边花岗岩明显不同,但与周边火山岩相同,二阶段模式年龄与周边火山岩重合(图9a, b),推断水头岩体与周边火山岩源区相同。水头岩体二阶段模式年龄为 1633~1832 Ma,平均值为 1738 Ma,对应华南地壳第二期幕式生长(李献华等,1991)。

  • 不同源岩熔融可形成不同类型的花岗岩 (Gerdes et al.,2000),I型花岗岩成因主要有:残留玄武质洋壳与沉积物部分熔融(Zhang et al.,2016Shao et al.,2017);幔源基性岩浆底侵下地壳发生部分熔融,长英质岩浆分离结晶(Griffin et al., 2004Wang et al.,2014);幔源基性岩浆底侵下地壳发生部分熔融,长英质岩浆与幔源岩浆在地壳深部混合,混合岩浆分离结晶(Champion Chappeu, 1992; Xia et al.,2015)。Mg# 值可判断源区是否发生了幔源物质混染作用(Rapp and Waston,1995),岩体 Mg# 值 13~28(<40),表明源区没有地幔物质混入,与上述锆石Hf同位素结果一致。CaO/Na2O比值为0.10~0.56(均值0.30),Rb/Sr比值为2.51~15.57 (均值 7.32),远高于全球上地壳丰度值(0.32);在 Al2O3/TiO2-CaO/Na2O 图解中(图11a),样品落入杂砂岩和泥质岩混合区域;在 Rb/Sr–Rb/Ba 图解中(图11b),样品均落于富黏土源岩区域。Nb/Ta值为 3.91~9.79(均值 5.83),远低于大陆地壳(13.4)和原始地幔(17.5)(Taylor and Mclennan,1985Sun and McDonough,1989),表明与 Nb 元素亏损有关; Zr/Hf 值为 13.94~33.29(均值 22.38),远低于大陆地壳(33. 0)和原始地幔(36.3)(Wedepohl,1995),表明岩浆经历了明显的分异过程(陈璟元和杨进辉,2015)。Nb/U和 Ce/Pb可反映源区性质,Nb/U值为 1.38~2.82(均值 2. 07)均小于壳源岩浆值(6.2) 和幔源岩浆值(47);Ce/Pb 值为 0.67~1.91(均值 1.22),均小于壳源岩浆值(3.9)和幔源岩浆值 (27)。以上证据表明水头岩体物质主要来源于成熟下地壳长英质火山岩。

  • 图11 水头岩体CaO/Na2O-Al2O3/TiO2图解(a)和Rb/Sr–Rb/Ba图解(b)(据Sylvester,1998

  • 水头岩体 Ba与 Sr呈正相关变化(图12a),表明钾长石和角闪石发生了分离结晶作用;Eu与Sr呈正相关变化(图12b),表明斜长石发生了分离结晶作用;SiO2与TiO2呈负相关,指示钛铁矿发生分离结晶作用(图7c),岩浆源区组分主要为壳源(徐文坦等, 2022);SiO2与 P2O5呈负相关(图7e),与磷灰石发生分离结晶有关;高分异指数(DI)指示岩浆演化过程以分离结晶为主;La-La/Sm 和 Th-Th/Zr 图解 (图7h、i),显示在形成过程中以部分熔融为主。综上所述,水头岩体主要与地幔岩浆上涌底侵下地壳,基性长英质火山岩部分熔融有关,且在岩浆演化过程中伴有显著分离结晶作用。

  • 图12 水头岩体Sr-Ba图解(a)(Wu et al.,2003)和Eu–Sr图解(b)(Xiang et al.,2017

  • Kfs—钾长石;Pl—斜长石;Bt—黑云母;Ms—白云母;Amp—角闪石;Grt—石榴石

  • 4.4 构造背景

  • 华南燕山期构造背景一直受到学者们的重点关注,曾提出逆冲推覆成因(Hsü et al.,1988Walter et al.,2005)、大陆伸展与裂谷作用(Gilder et al.,1996Li,2000)、地幔柱上升(毛建仁等,1999谢桂青等,2001Deng et al.,2004);弧后伸展环境(Li,2000Brewer et al.,2004Shinjo and Kato,2000)等不同观点。目前主流观点是古太平洋板块俯冲作用是形成华南燕山期花岗质岩石— 火山岩的根本动力学机制(Zhou et al.,2006Li et al.,2007毛景文等,2007Chen et al.,2008Mao et al.,2013Li et al.,2015Zhang et al.,2023),但精确的俯冲过程还存在争议。如:Li et al.(2007) 提出古太平洋板块最初是平板俯冲,随后发生了板片折断、拆沉和后撤;Zhou et al.(2000)指出燕山期岩浆岩由内陆向沿海逐渐年轻化,建立了岩石圈消减和玄武质岩浆底侵下地壳相结合的模型,并提出板片俯冲的角度是逐渐增大的。但华南东部第三阶段 140~125 Ma 岩浆活动处于伸展构造背景(Li, 2000Wang et al.,2008Zhou et al.,2013),广泛出露的A型花岗岩和双峰式火山岩可充分说明该时期华南处于弧后伸展背景。

  • 在 Y-Nb 图解(图13a)和(Y+Nb)-Rb 图解(图13b)中,样品均落入后碰撞构造环境,与华南大多数晚侏罗世花岗岩构造环境一致(Li and Li,2007He and Kato,2012Tao et al.,2013)。从侏罗纪到白垩纪,在 150 Ma 古太平洋板块由 NNW 或 NW 向向内陆俯冲,随着俯冲角度增加,弧后伸展作用不断增强,软流圈上涌释放流体使陆下地幔部分熔融,产生的铁镁质岩浆底侵元古代基底形成长英质岩浆。岩石圈强烈的伸展减薄诱发深大断裂(如政和—大埔深大断裂)复活,在断裂带部位及附近富集丰富的矿产资源,如:钨、锡、铌钽、稀土等,水头岩体就是富稀土岩体之一,可作为今后勘查稀土矿产的重点区域。

  • 图13 水头岩体Y-Nb图解(a)和(Y+Nb)-Rb图解(b)(底图据Pearce et al.,1984

  • 5 结论

  • (1)LA-ICP-MS 锆石和独居石 U-Pb 年龄分别为(151.6±1.80)Ma 和(145.3±1.20)Ma,属晚侏罗世岩浆作用产物。

  • (2)水头岩体地球化学特征显示高硅、富碱,铝饱和指数 A/CNK 为 1. 04~1.19,全岩锆饱和温度较低(728~784℃),P2O5与 SiO2负相关,指示水头岩体为高分异I型花岗岩。

  • (3)水头岩体 εHft)值为-6.78~10. 04,二阶段模式年龄为 1832~1633 Ma,源区为古元古代基性长英质火山岩,形成于华南晚侏罗世弧后伸展构造环境。

  • 参考文献

    • Amelin Y, Lee D C, Halliday A N, Pidgeon R T. 1999. Nature of the earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 399(6733): 252-255.

    • Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse J L. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition[J]. Geology, 44(3): 231-234.

    • Brewer T S, Åhäll K I, Menuge J F, Storey C, Parrish R. 2004. Mesoproterozoic bimodal volcanism in SW Norway, evidence for recurring pre-Sveconorwegian continental margin tectonism[J]. Precambrian Research, 134: 249-273.

    • Cao M X, Wang X G, Zhang D F, Zhang Y W, Gong L X, Zhong W. 2024. Petrogenesis and REE mineralogical characteristics of Shitouping granites in southern Jiangxi Province: Implication for HREE mineralization in South China[J]. Ore Geology Reviews, 168, 106011.

    • Champion D C, Chappell B W. 1992. Petrogenesis of felsic I-type granites: An example from northern Queensland[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 115-126.

    • Chappell B W, White A J R. 1992. I and S-type granites in the Lachlan Fold Bell[J]. Earth Science, 83: 1-26.

    • Chappell B W. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3): 535-551.

    • Chen C H, Lee C Y, Shinjo R. 2008. Was there Jurassic paleo-Pacific subduction in South China?: Constraints from 40Ar/39Ar dating, elemental and Sr-Nd-Pb isotopic geochemistry of the Mesozoic basalts[J]. Lithos, 106(1/2): 83-92.

    • Deng J F, Mo X X, Zhao H L, Wu Z X, Luo Z H, Su S G. 2004. A new model for the dynamic evolution of Chinese lithosphere: ‘Continental roots-plume tectonics’[J]. Earth-Science Reviews, 65(3/4): 223-275.

    • Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033-2048.

    • Gerdes A, Wörner G, Henk A. 2000. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: The Variscan South Bohemian Batholith[J]. Journal of the Geological Society, 157(3): 577-587.

    • Gilder S A, Gill J B, Coe R S, Zhao X, Liu Z, Wang G, Yuan K, Liu W, Kuang G, Wu H. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China[J]. Journal of Geophysical Research, 101(B7): 16137-16154.

    • Griffin W L, Belousova E A, Shee S R, Pearson N J, O’Reilly S Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 131(3): 231-282.

    • Griffin W L, Wang X, Jackson S E, Pearson N J, O’Reilly S Y, Xu X, Zhou X. 2002. Zircon chemistry and magma mixing, SE china: In-situ analysis of hf isotopes, tonglu and pingtan igneous complexes[J]. Lithos, 61(3/4): 237-269.

    • He Z Y, Xu X S. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to geodynamics of paleo-Pacific plate subduction[J]. Chemical Geology, 328: 208-221.

    • Hsü K J, Sun S, Li J L, Chen H L, Pen H P, Sengor A M C. 1988. Mesozoic overthrust tectonics in south China[J]. Geology, 16(5): 418-421.

    • Hu Z C, Liu Y S, Gao S. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399.

    • Jiang H, Zhang D Y, Wang S W, Fu X, Ye L X, White N C, Zhou T F. 2021. Genesis of mafic microgranular enclaves in the Shaocunwu granodiorite, Southern China, and their implications: Evidence from zircon and whole-rock geochemistry[J]. Acta Geologica Sinica, 95(3): 761-779.

    • King P L, Chappell B W, Allen C M, White A J R. 2001. Are A-type granites the high- temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite[J]. Australian Journal of Earth Sciences, 48(4): 501-514.

    • King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, Southeastern Australia[J]. Journal of Petrology, 38(3): 371-391.

    • Li Q, Zhao, K D, Palmer M R, Chen W, Jiang S Y. 2021. Exploring volcanic-intrusive connections and chemical differentiation of high silica magmas in the Early Cretaceous Yanbei caldera complex hosting a giant tin deposit. Southeast China[J]. Chemical Geology. 584, 120501.

    • Li X H. 2000. Cretaceous magmatism and lithospheric extension in southeast China[J]. Journal of Asian Earth Science, 18(3): 293-305.

    • Li X H, Li Z X, Li W X, Liu Y, Yuan C, Wei G J, Qi C S. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?[J]. Lithos, 96(1/2): 186-204.

    • Li Y, Ma C Q, Xing G F, Zhou H W. 2015. The Early Cretaceous evolution of SE China: Insights from the Changle-Nan’ao Metamorphic Belt[J]. Lithos, 230: 94-104.

    • Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 35(2): 179-182.

    • Liu X, Liang H, Wang Q, Ma L, Yang J H, Guo H F, Xiong X L, Ou Q, Zeng J P, Gou G N, Hao L L. 2022. Early Cretaceous Sn-bearing granite porphyries, A-type granites, and rhyolites in the Mikengshan-Qingxixiang-Yanbei area, South China: Petrogenesis and implications for ore mineralization[J]. Journal of Asian Earth Sciences, 235: 105274.

    • Loiselle M C, Wones D R. 1979. Characteristics and origin of anorogenic granites[J]. Geological Society of America Bulletin (Abstracts with Programs), 11: 468.

    • Mao J W, Cheng Y B, Chen M H, Piraino. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 48: 267-294.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643.

    • Middlemost E A K. 1985. Magmas and Magmatic Rocks[M]. London: Longman, 1-266.

    • Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3/4): 215-224.

    • Patiño D A E, Johnston A D. 1991. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 107: 202-218.

    • Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956-983.

    • Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81.

    • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 36(4): 891-931.

    • Shao F L, Niu Y L, Liu Y, Chen S, Kong J J, Duan M. 2017. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications[J]. Lithos, (282/283): 33-44.

    • Shinjo R, Kato Y. 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 54: 117-137.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. London: Geological Society Special Publications: 313-345.

    • Sylvester P J. 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1/4): 29-44.

    • Tao J H, Li W X, Li X H, Cen T. 2013. Petrogenesis of Early Yanshanian highly evolved granites in the Longyuanba area, southern Jiangxi Province: Evidence from zircon U-Ph dating, Hf-O isotope and whole-rock geochemistry[J]. Science China (Earth Sciences), 56(6): 922-939.

    • Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution[J]. The Journal of Geology, 94(4): 57-72.

    • Vervoort J D, Pachelt P J, Gehrels G E, Nutman A P. 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes[J]. Nature, 379: 624-627.

    • Wang X S, Bi X W, Leng C B, Zhong H, Tang H F, Chen Y W, Yin G H, Huang D Z, Zhou M F. 2014. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China: Implications for metallogenesis and geodynamic setting[J]. Ore Geology Reviews, 61: 73-95.

    • Wang Y J, Fan W M, Cawood P A, Li S Z. 2008. Sr-Nd-Pb isotopic constraints on multiple mantle domains for Mesozoic mafic rocks beneath the South China Block hinterland[J]. Lithos, 106(3/4): 297-308.

    • Walter T R, Troll V R, Cailleau B, Belousov A, Schmincke H U, Amelung F, Bogaard P V D. 2005. Rift zone reorganization through flank instability in ocean island volcanoes: An example from Tenerife, Canary Islands[J]. Bulletin of Volcanology, 67(4): 281-291.

    • Wedepohl K H. 1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7): 1217-1232.

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407-419.

    • White W M, Tapia M D M, Schilling J G. 1979. The petrology and geochemistry of the Azores Islands[J]. Contributions to Mineralogy and Petrology, 69(3): 201-213.

    • Wu F Y, Jahn B M, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C, Sun D Y. 2003. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis[J]. Lithos, 66(3/4): 241-273.

    • Xia R, Wang C M, Qing M, Li W L, Carranza E J M, Guo X D, Ge L S, Zeng G Z. 2015. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nangetan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys[J]. Lithos, 234: 47-60.

    • Xiang Y X, Yang J H, Chen J Y, Zhang Y. 2017. Petrogenesis of Lingshan highly fractionated granites in the Southeast China: Implication for Nb-Ta mineralization[J]. Ore Geology Reviews, 89: 495-525.

    • Zhang Y, Niu Y L, Hu Y, Liu J J, Ye L, Kong J J, Duan M. 2016. The syncollisional granitoid magmatism and continental crust growth in the West Kunlun Orogen, China-Evidence from geochronology and geochemistry of the Arkarz pluton[J]. Lithos, 245: 191-204.

    • Zhang Z Y, Hou Z Q, Lü Q T, Zhang X W, Pan X F, Fan X K, Zhang Y Q, Wang C G, Lü Y J. 2023. Crustal architectural controls on critical metal ore systems in South China based on Hf isotopic mapping[J]. Geology, 51(8): 738-742.

    • Zhou J, Jiang Y H, Xing G F, Zeng Y, Ge W Y. 2013. Geochronology and petrogenesis of Cretaceous A-type granites from the NE Jiangnan Orogen, SE China[J]. International Geology Review, 55(11): 1359-1383.

    • Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26-33.

    • 曹明轩, 张德富, 张健仁, 龚良信, 钟文, 王先广. 2024. 赣南早古生代城坑岩体成因及其地质意义[J/OL]. 东华理工大学学报(自然科学版), 1-15. http: //kns. cnki. net/kcms/detail/36. 1300. N. 20240819. 1527. 002. html.

    • 岑涛, 李武显, 陶继华, 赵希林, 邢光福. 2017. 赣南版石—蔡坊火山岩年代学、地球化学和锆石Hf同位素特征及其地质意义[J]. 大地构造与成矿学, 41(5): 933-949.

    • 陈璟元, 杨进辉. 2015. 佛冈高分异I型花岗岩的成因: 来自Nb-Ta-Zr-Hf等元素的制约[J]. 岩石学报, 31(3): 846-854.

    • 丰成友, 黄凡, 曾载淋, 屈文俊, 丁明. 2011. 赣南九龙脑岩体及洪水寨云英岩型钨矿年代学[J]. 吉林大学学报(地球科学版), 41(1): 111-121.

    • 冯尚杰, 陈卫锋, 王洪作, 凌洪飞, 赵葵东, 陈培荣. 2020. 赣中地区晚中生代高分异A型花岗岩的厘定及其成因研究[J]. 地质学报, 94(4): 1227-1247.

    • 龚良信, 张德富, 张健仁, 王先广, 曹明轩, 吴德海, 唐梅华. 2024. 赣南石头坪重稀土矿床象洞岩体年代学、地球化学特征及成因分析[J/OL]. 稀土[J], 1-19. http: //kns. cnki. net/kcms/detail/15. 1099. TF. 20240627. 1023. 001. html.

    • 华仁民, 陈培荣, 张文兰, 陆建军. 2005. 论华南地区中生代3次大规模成矿作用[J]. 矿床地质, 24(2): 99-107.

    • 侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 28(4): 481-492.

    • 李献华, 李武显, 李正祥. 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 52(9): 981-991.

    • 李献华, 赵振华, 桂训唐, 于津生. 1991. 华南前寒武纪地壳形成时代的Sm-Nd和锆石U-Pb同位素制约[J]. 地球化学, (3): 255-264.

    • 刘高峰, 王连训, 罗春林, 熊清华, 楼法生, 卢先锋, 刘永旭. 2023赣南遂川晚侏罗世幕式花岗质岩浆活动: 年代学、地球化学和Lu-Hf同位素约束[J]. 岩石学报, 39(8): 2489-2510.

    • 毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 23(10): 2329-2338.

    • 毛建仁, 陶奎元, 邢光福, 杨祝良, 赵宇. 1999. 中国东南大陆边缘中新生代地幔柱活动的岩石学记录[J]. 地球学报, 20(3): 253-258.

    • 彭琳琳, 陈友锋, 侯珊珊, 郑云飞. 2016. 江西湖岽矿区钨锡多金属矿地质特征及成因探讨[J]. 矿产勘查, 7(2): 282-290.

    • 邱检生, 肖娥, 胡建, 徐夕生, 蒋少涌, 李真. 2008. 福建北东沿海高分异Ⅰ型花岗岩的成因: 锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J]. 岩石学报, 24(11): 2468-2484.

    • 舒徐洁, 陈志洪, 朱延辉, 廖圣兵, 周博文, 李功振, 赵旭辰, 刘爽, 陈雷超. 2018. 赣南兴国东固高分异花岗岩成因及地质意义[J]. 地质论评, 64(1): 108-126.

    • 孙涛. 2006. 新编华南花岗岩分布图及说明[J]. 地质通报, 25(3): 332-335.

    • 陶继华, 李武显, 李献华, 岑涛. 2013. 赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究[J]. 中国科学: 地球科学, 43(5): 770-788.

    • 王丽丽. 2015. 华南赣州地区早古生代晚期—中生代花岗岩类地球化学与岩石成因[D]. 北京: 中国地质大学(北京).

    • 王崴平, 陈毓川, 王登红, 陈振宇. 2014. 赣南兴国县良村花岗岩锆石LA-ICP-MSU-Pb年代学、岩石地球化学与成岩机制研究[J]. 大地构造与成矿学, 38(2): 347-358.

    • 吴福元, 郭春丽, 胡方泱, 刘小驰, 赵俊兴, 李晓峰, 秦克章. 2023. 南岭高分异花岗岩成岩与成矿[J]. 岩石学报, 39(1): 1-36.

    • 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185-220.

    • 谢桂青, 胡瑞忠, 赵军红, 蒋国豪. 2001. 中国东南部地幔柱及其与中生代大规模成矿关系初探[J]. 大地构造与成矿学, 25(2): 179-186.

    • 徐文坦, 张雪辉, 张斌斌, 吕劲松, 孙建东, 张勇, 武彬. 2022. 赣东北地区福泉山岩体高分异S型花岗岩成因: 来自锆石U-Pb年龄、Hf同位素及地球化学的证据[J]. 地质通报, 41(4): 577-589.

    • 杨瑞栋, 童日发, 邵伟江, 曾跃. 2013. 赣南兴国旋卷构造区寻找富大矿床的思考[J]. 矿产勘查, 4(2): 121-130.

    • 杨玉元, 李宁波, 姜玉航, 赵旭. 2024. 离子吸附型轻稀土和重稀土矿床成矿母岩地球化学特征对比研究: 以关西和大埠花岗岩体为例[J]. 大地构造与成矿学, 48(2): 232-247.

    • 杨世文, 楼法生, 张芳荣, 丁沛勋, 曹员兵, 徐喆, 孙超, 冯增会, 凌联海. 2017. 赣南岐山岩体深熔-幕式岩浆活动: 来自锆石U-Pb精细年代学研究[J]. 地质学报, 91(4): 864-875.

    • 杨世文, 楼法生, 张芳荣, 吴正昌, 丰成友. 2019. 赣南晚侏罗世铝质A型花岗岩带及其意义[J]. 地质科技情报, 38(3): 12-29.

    • 于扬, 陈振宇, 陈郑辉, 侯可军, 赵正, 许建祥, 张家菁, 曾载淋. 2012. 赣南燕山期水头岩体的锆石铀-铅年代学研究及其含矿性评价[J]. 岩矿测试, 31(4): 736-744.

    • 张德富, 曹明轩, 龚兴, 龚良信, 钟文, 邱文江, 王先广. 2024a. 赣南石头坪重稀土矿床赋矿母岩地质特征及成矿意义探讨[J]. 东华理工大学学报(自然科学版), 47(4): 338-348.

    • 张德富, 王先广, 何涛, 曹明轩, 吕婷婷, 龚良信, 徐进. 2024b. 赣南加里东期重稀土矿赋矿母岩岩石成因及地质意义[J/OL]. 现代地质, 1-18. https: //doi. org/10. 19657/j. geoscience. 1000-8527. 2024. 095.

    • 张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 22(9): 2249-2269.

图1 赣南及周边地区花岗岩分布图(a,据孙涛,2006)和水头岩体地质简图(b)
图2 赣南水头花岗岩样品宏观(a)和镜下(b)照片
图3 水头岩体锆石阴极发光图像(a)和独居石背散射图像(b)
图4 水头岩体锆石U–Pb 协和图(a)和加权平均年龄图(b)
图5 水头岩体独居石U-Pb协和图(a)和加权平均年龄图(b)
图6 水头岩体岩石分类图解(碛肚山岩体数据来源于Cao et al.,2024;张德富等,2024,下同)
图7 水头岩体哈克图解
图8 水头岩体稀土元素球粒陨石标准化图(a)和微量元素原始地幔标准化图(b)(标准化数值据Sun and McDonough,1989
图9 水头岩体tεHft)图解(a);二阶模式年龄分布图(b)(火山岩、花岗岩数据来源于岑涛等,2017Liu et al.,2022;张德富等,2024及作者未发表数据)
图10 水头岩体岩石类型判别图
图11 水头岩体CaO/Na2O-Al2O3/TiO2图解(a)和Rb/Sr–Rb/Ba图解(b)(据Sylvester,1998
图12 水头岩体Sr-Ba图解(a)(Wu et al.,2003)和Eu–Sr图解(b)(Xiang et al.,2017
图13 水头岩体Y-Nb图解(a)和(Y+Nb)-Rb图解(b)(底图据Pearce et al.,1984
表1 水头岩体LA-ICP-MS 锆石U-Pb同位素分析结果
表2 水头岩体LA–ICP–MS 独居石U–Pb同位素分析结果
表3 水头岩体锆石Lu-Hf同位素分析结果

相似文献

  • 参考文献

    • Amelin Y, Lee D C, Halliday A N, Pidgeon R T. 1999. Nature of the earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 399(6733): 252-255.

    • Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse J L. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition[J]. Geology, 44(3): 231-234.

    • Brewer T S, Åhäll K I, Menuge J F, Storey C, Parrish R. 2004. Mesoproterozoic bimodal volcanism in SW Norway, evidence for recurring pre-Sveconorwegian continental margin tectonism[J]. Precambrian Research, 134: 249-273.

    • Cao M X, Wang X G, Zhang D F, Zhang Y W, Gong L X, Zhong W. 2024. Petrogenesis and REE mineralogical characteristics of Shitouping granites in southern Jiangxi Province: Implication for HREE mineralization in South China[J]. Ore Geology Reviews, 168, 106011.

    • Champion D C, Chappell B W. 1992. Petrogenesis of felsic I-type granites: An example from northern Queensland[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 115-126.

    • Chappell B W, White A J R. 1992. I and S-type granites in the Lachlan Fold Bell[J]. Earth Science, 83: 1-26.

    • Chappell B W. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3): 535-551.

    • Chen C H, Lee C Y, Shinjo R. 2008. Was there Jurassic paleo-Pacific subduction in South China?: Constraints from 40Ar/39Ar dating, elemental and Sr-Nd-Pb isotopic geochemistry of the Mesozoic basalts[J]. Lithos, 106(1/2): 83-92.

    • Deng J F, Mo X X, Zhao H L, Wu Z X, Luo Z H, Su S G. 2004. A new model for the dynamic evolution of Chinese lithosphere: ‘Continental roots-plume tectonics’[J]. Earth-Science Reviews, 65(3/4): 223-275.

    • Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033-2048.

    • Gerdes A, Wörner G, Henk A. 2000. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: The Variscan South Bohemian Batholith[J]. Journal of the Geological Society, 157(3): 577-587.

    • Gilder S A, Gill J B, Coe R S, Zhao X, Liu Z, Wang G, Yuan K, Liu W, Kuang G, Wu H. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China[J]. Journal of Geophysical Research, 101(B7): 16137-16154.

    • Griffin W L, Belousova E A, Shee S R, Pearson N J, O’Reilly S Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 131(3): 231-282.

    • Griffin W L, Wang X, Jackson S E, Pearson N J, O’Reilly S Y, Xu X, Zhou X. 2002. Zircon chemistry and magma mixing, SE china: In-situ analysis of hf isotopes, tonglu and pingtan igneous complexes[J]. Lithos, 61(3/4): 237-269.

    • He Z Y, Xu X S. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to geodynamics of paleo-Pacific plate subduction[J]. Chemical Geology, 328: 208-221.

    • Hsü K J, Sun S, Li J L, Chen H L, Pen H P, Sengor A M C. 1988. Mesozoic overthrust tectonics in south China[J]. Geology, 16(5): 418-421.

    • Hu Z C, Liu Y S, Gao S. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399.

    • Jiang H, Zhang D Y, Wang S W, Fu X, Ye L X, White N C, Zhou T F. 2021. Genesis of mafic microgranular enclaves in the Shaocunwu granodiorite, Southern China, and their implications: Evidence from zircon and whole-rock geochemistry[J]. Acta Geologica Sinica, 95(3): 761-779.

    • King P L, Chappell B W, Allen C M, White A J R. 2001. Are A-type granites the high- temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite[J]. Australian Journal of Earth Sciences, 48(4): 501-514.

    • King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, Southeastern Australia[J]. Journal of Petrology, 38(3): 371-391.

    • Li Q, Zhao, K D, Palmer M R, Chen W, Jiang S Y. 2021. Exploring volcanic-intrusive connections and chemical differentiation of high silica magmas in the Early Cretaceous Yanbei caldera complex hosting a giant tin deposit. Southeast China[J]. Chemical Geology. 584, 120501.

    • Li X H. 2000. Cretaceous magmatism and lithospheric extension in southeast China[J]. Journal of Asian Earth Science, 18(3): 293-305.

    • Li X H, Li Z X, Li W X, Liu Y, Yuan C, Wei G J, Qi C S. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?[J]. Lithos, 96(1/2): 186-204.

    • Li Y, Ma C Q, Xing G F, Zhou H W. 2015. The Early Cretaceous evolution of SE China: Insights from the Changle-Nan’ao Metamorphic Belt[J]. Lithos, 230: 94-104.

    • Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 35(2): 179-182.

    • Liu X, Liang H, Wang Q, Ma L, Yang J H, Guo H F, Xiong X L, Ou Q, Zeng J P, Gou G N, Hao L L. 2022. Early Cretaceous Sn-bearing granite porphyries, A-type granites, and rhyolites in the Mikengshan-Qingxixiang-Yanbei area, South China: Petrogenesis and implications for ore mineralization[J]. Journal of Asian Earth Sciences, 235: 105274.

    • Loiselle M C, Wones D R. 1979. Characteristics and origin of anorogenic granites[J]. Geological Society of America Bulletin (Abstracts with Programs), 11: 468.

    • Mao J W, Cheng Y B, Chen M H, Piraino. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 48: 267-294.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643.

    • Middlemost E A K. 1985. Magmas and Magmatic Rocks[M]. London: Longman, 1-266.

    • Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3/4): 215-224.

    • Patiño D A E, Johnston A D. 1991. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 107: 202-218.

    • Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956-983.

    • Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81.

    • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 36(4): 891-931.

    • Shao F L, Niu Y L, Liu Y, Chen S, Kong J J, Duan M. 2017. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications[J]. Lithos, (282/283): 33-44.

    • Shinjo R, Kato Y. 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 54: 117-137.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. London: Geological Society Special Publications: 313-345.

    • Sylvester P J. 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1/4): 29-44.

    • Tao J H, Li W X, Li X H, Cen T. 2013. Petrogenesis of Early Yanshanian highly evolved granites in the Longyuanba area, southern Jiangxi Province: Evidence from zircon U-Ph dating, Hf-O isotope and whole-rock geochemistry[J]. Science China (Earth Sciences), 56(6): 922-939.

    • Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution[J]. The Journal of Geology, 94(4): 57-72.

    • Vervoort J D, Pachelt P J, Gehrels G E, Nutman A P. 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes[J]. Nature, 379: 624-627.

    • Wang X S, Bi X W, Leng C B, Zhong H, Tang H F, Chen Y W, Yin G H, Huang D Z, Zhou M F. 2014. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China: Implications for metallogenesis and geodynamic setting[J]. Ore Geology Reviews, 61: 73-95.

    • Wang Y J, Fan W M, Cawood P A, Li S Z. 2008. Sr-Nd-Pb isotopic constraints on multiple mantle domains for Mesozoic mafic rocks beneath the South China Block hinterland[J]. Lithos, 106(3/4): 297-308.

    • Walter T R, Troll V R, Cailleau B, Belousov A, Schmincke H U, Amelung F, Bogaard P V D. 2005. Rift zone reorganization through flank instability in ocean island volcanoes: An example from Tenerife, Canary Islands[J]. Bulletin of Volcanology, 67(4): 281-291.

    • Wedepohl K H. 1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7): 1217-1232.

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407-419.

    • White W M, Tapia M D M, Schilling J G. 1979. The petrology and geochemistry of the Azores Islands[J]. Contributions to Mineralogy and Petrology, 69(3): 201-213.

    • Wu F Y, Jahn B M, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C, Sun D Y. 2003. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis[J]. Lithos, 66(3/4): 241-273.

    • Xia R, Wang C M, Qing M, Li W L, Carranza E J M, Guo X D, Ge L S, Zeng G Z. 2015. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nangetan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys[J]. Lithos, 234: 47-60.

    • Xiang Y X, Yang J H, Chen J Y, Zhang Y. 2017. Petrogenesis of Lingshan highly fractionated granites in the Southeast China: Implication for Nb-Ta mineralization[J]. Ore Geology Reviews, 89: 495-525.

    • Zhang Y, Niu Y L, Hu Y, Liu J J, Ye L, Kong J J, Duan M. 2016. The syncollisional granitoid magmatism and continental crust growth in the West Kunlun Orogen, China-Evidence from geochronology and geochemistry of the Arkarz pluton[J]. Lithos, 245: 191-204.

    • Zhang Z Y, Hou Z Q, Lü Q T, Zhang X W, Pan X F, Fan X K, Zhang Y Q, Wang C G, Lü Y J. 2023. Crustal architectural controls on critical metal ore systems in South China based on Hf isotopic mapping[J]. Geology, 51(8): 738-742.

    • Zhou J, Jiang Y H, Xing G F, Zeng Y, Ge W Y. 2013. Geochronology and petrogenesis of Cretaceous A-type granites from the NE Jiangnan Orogen, SE China[J]. International Geology Review, 55(11): 1359-1383.

    • Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26-33.

    • 曹明轩, 张德富, 张健仁, 龚良信, 钟文, 王先广. 2024. 赣南早古生代城坑岩体成因及其地质意义[J/OL]. 东华理工大学学报(自然科学版), 1-15. http: //kns. cnki. net/kcms/detail/36. 1300. N. 20240819. 1527. 002. html.

    • 岑涛, 李武显, 陶继华, 赵希林, 邢光福. 2017. 赣南版石—蔡坊火山岩年代学、地球化学和锆石Hf同位素特征及其地质意义[J]. 大地构造与成矿学, 41(5): 933-949.

    • 陈璟元, 杨进辉. 2015. 佛冈高分异I型花岗岩的成因: 来自Nb-Ta-Zr-Hf等元素的制约[J]. 岩石学报, 31(3): 846-854.

    • 丰成友, 黄凡, 曾载淋, 屈文俊, 丁明. 2011. 赣南九龙脑岩体及洪水寨云英岩型钨矿年代学[J]. 吉林大学学报(地球科学版), 41(1): 111-121.

    • 冯尚杰, 陈卫锋, 王洪作, 凌洪飞, 赵葵东, 陈培荣. 2020. 赣中地区晚中生代高分异A型花岗岩的厘定及其成因研究[J]. 地质学报, 94(4): 1227-1247.

    • 龚良信, 张德富, 张健仁, 王先广, 曹明轩, 吴德海, 唐梅华. 2024. 赣南石头坪重稀土矿床象洞岩体年代学、地球化学特征及成因分析[J/OL]. 稀土[J], 1-19. http: //kns. cnki. net/kcms/detail/15. 1099. TF. 20240627. 1023. 001. html.

    • 华仁民, 陈培荣, 张文兰, 陆建军. 2005. 论华南地区中生代3次大规模成矿作用[J]. 矿床地质, 24(2): 99-107.

    • 侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 28(4): 481-492.

    • 李献华, 李武显, 李正祥. 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 52(9): 981-991.

    • 李献华, 赵振华, 桂训唐, 于津生. 1991. 华南前寒武纪地壳形成时代的Sm-Nd和锆石U-Pb同位素制约[J]. 地球化学, (3): 255-264.

    • 刘高峰, 王连训, 罗春林, 熊清华, 楼法生, 卢先锋, 刘永旭. 2023赣南遂川晚侏罗世幕式花岗质岩浆活动: 年代学、地球化学和Lu-Hf同位素约束[J]. 岩石学报, 39(8): 2489-2510.

    • 毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 23(10): 2329-2338.

    • 毛建仁, 陶奎元, 邢光福, 杨祝良, 赵宇. 1999. 中国东南大陆边缘中新生代地幔柱活动的岩石学记录[J]. 地球学报, 20(3): 253-258.

    • 彭琳琳, 陈友锋, 侯珊珊, 郑云飞. 2016. 江西湖岽矿区钨锡多金属矿地质特征及成因探讨[J]. 矿产勘查, 7(2): 282-290.

    • 邱检生, 肖娥, 胡建, 徐夕生, 蒋少涌, 李真. 2008. 福建北东沿海高分异Ⅰ型花岗岩的成因: 锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J]. 岩石学报, 24(11): 2468-2484.

    • 舒徐洁, 陈志洪, 朱延辉, 廖圣兵, 周博文, 李功振, 赵旭辰, 刘爽, 陈雷超. 2018. 赣南兴国东固高分异花岗岩成因及地质意义[J]. 地质论评, 64(1): 108-126.

    • 孙涛. 2006. 新编华南花岗岩分布图及说明[J]. 地质通报, 25(3): 332-335.

    • 陶继华, 李武显, 李献华, 岑涛. 2013. 赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究[J]. 中国科学: 地球科学, 43(5): 770-788.

    • 王丽丽. 2015. 华南赣州地区早古生代晚期—中生代花岗岩类地球化学与岩石成因[D]. 北京: 中国地质大学(北京).

    • 王崴平, 陈毓川, 王登红, 陈振宇. 2014. 赣南兴国县良村花岗岩锆石LA-ICP-MSU-Pb年代学、岩石地球化学与成岩机制研究[J]. 大地构造与成矿学, 38(2): 347-358.

    • 吴福元, 郭春丽, 胡方泱, 刘小驰, 赵俊兴, 李晓峰, 秦克章. 2023. 南岭高分异花岗岩成岩与成矿[J]. 岩石学报, 39(1): 1-36.

    • 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185-220.

    • 谢桂青, 胡瑞忠, 赵军红, 蒋国豪. 2001. 中国东南部地幔柱及其与中生代大规模成矿关系初探[J]. 大地构造与成矿学, 25(2): 179-186.

    • 徐文坦, 张雪辉, 张斌斌, 吕劲松, 孙建东, 张勇, 武彬. 2022. 赣东北地区福泉山岩体高分异S型花岗岩成因: 来自锆石U-Pb年龄、Hf同位素及地球化学的证据[J]. 地质通报, 41(4): 577-589.

    • 杨瑞栋, 童日发, 邵伟江, 曾跃. 2013. 赣南兴国旋卷构造区寻找富大矿床的思考[J]. 矿产勘查, 4(2): 121-130.

    • 杨玉元, 李宁波, 姜玉航, 赵旭. 2024. 离子吸附型轻稀土和重稀土矿床成矿母岩地球化学特征对比研究: 以关西和大埠花岗岩体为例[J]. 大地构造与成矿学, 48(2): 232-247.

    • 杨世文, 楼法生, 张芳荣, 丁沛勋, 曹员兵, 徐喆, 孙超, 冯增会, 凌联海. 2017. 赣南岐山岩体深熔-幕式岩浆活动: 来自锆石U-Pb精细年代学研究[J]. 地质学报, 91(4): 864-875.

    • 杨世文, 楼法生, 张芳荣, 吴正昌, 丰成友. 2019. 赣南晚侏罗世铝质A型花岗岩带及其意义[J]. 地质科技情报, 38(3): 12-29.

    • 于扬, 陈振宇, 陈郑辉, 侯可军, 赵正, 许建祥, 张家菁, 曾载淋. 2012. 赣南燕山期水头岩体的锆石铀-铅年代学研究及其含矿性评价[J]. 岩矿测试, 31(4): 736-744.

    • 张德富, 曹明轩, 龚兴, 龚良信, 钟文, 邱文江, 王先广. 2024a. 赣南石头坪重稀土矿床赋矿母岩地质特征及成矿意义探讨[J]. 东华理工大学学报(自然科学版), 47(4): 338-348.

    • 张德富, 王先广, 何涛, 曹明轩, 吕婷婷, 龚良信, 徐进. 2024b. 赣南加里东期重稀土矿赋矿母岩岩石成因及地质意义[J/OL]. 现代地质, 1-18. https: //doi. org/10. 19657/j. geoscience. 1000-8527. 2024. 095.

    • 张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 22(9): 2249-2269.