-
0 引言
-
黄铁矿是各类金矿床中含量最丰富的硫化物之一,其结构和化学成分在揭示成矿元素迁移-富集机理方面具有重要的指示意义(Deditius et al., 2011)。近年来,随着测试仪器的进步,使得在低检测水平下同时分析单个黄铁矿颗粒内多种元素的含量成为可能(Steadman et al.,2021)。通过微区原位手段分析不同阶段、结构的黄铁矿微量元素含量,不仅可以探讨元素的迁移、富集规律,还可以反演其形成的物理化学条件(Barker et al.,2009; Ciobanu et al.,2009;Cook et al.,2009;Ulrich et al.,2011)。这种方法被广泛应用于揭示不同类型金矿床,如卡林型金矿床、造山型金矿床、斑岩型铜金矿床和浅成热液型金矿床中的元素赋存状态、成矿过程及成因(Large et al.,2009;Cook et al., 2013;Keith et al.,2020;Li et al.,2021;Zhang et al.,2022;石苏东等,2023)。此外,金与富砷黄铁矿或毒砂密切相关,以不可见金(<100 nm的纳米颗粒或晶格金)或微米矿物包裹体的形式存在(Reich et al.,2005;Cook et al.,2013)。不可见金很难从矿石中分离出来,处理这些矿石的成本远高于处理可见金矿石(Large and Maslennikov,2020)。因此,加强对黄铁矿等载金矿物中金赋存状态的研究可以促进金矿选矿工艺的改进。
-
江南造山带位于扬子地块和华夏地块之间(图1a),发育赋存于前寒武系浅变质岩系的金矿床 250 余个,金总储量超过 1000 t(Xu et al.,2017)。其中,湘东北地区是其重要的金成矿区之一,包括万古金矿田、黄金洞金矿田和醴陵金矿田。万古金矿田由白荆、大洞、罗家塘、团家洞、摇钱坡、江东等多个金矿床组成,金资源量高达 85 t(Deng et al., 2017)。近年来的研究表明,万古金矿田中加里东期的贫矿热液脉被燕山期的金矿化叠加(Deng et al.,2017,2020)。前者形成于较深的造山挤压背景,后者形成于较浅的伸展背景,成矿物质可能有燕山期花岗岩或地幔的贡献(毛景文和李红艳, 1997;毛景文等,1997),这种成矿模式被称为陆内活化型金矿床(Xu et al.,2017)。多期成矿的叠加作用使成矿过程难以厘定,一定程度上影响了对矿床成因的深入认识。
-
江东金矿床位于湘东北平江县万古金矿田内,矿区地理坐标为:东经 113°35'58″~113°37'48″,北纬28°37'05″~28°37'29″,其金资源量为12.9 t,平均品位 4.79 ×10-6(李建斌等,2020),成矿规模大,能有效代表万古金矿田的成矿特征。目前,江东金矿床勘查程度较高,但对于该矿床细致的矿物学、元素地球化学以及金的富集机制研究相对较少,限制了其矿床成因的理解。该矿床不同阶段发育不同类型的黄铁矿,为研究该地区成矿过程提供了良好的窗口。因此,本文选取万古金矿田江东金矿床作为研究区域,采用LA-ICP-MS分析江东金矿床不同世代的黄铁矿的原位微量元素组成。结合前人的研究成果,探讨该矿床的黄铁矿微量元素特征及其赋存形式,探讨江东金矿床黄铁矿的演化过程及金的富集机制,有助于更深入理解万古金矿田乃至江南造山带金矿床的成因。
-
1 区域与矿床地质
-
1.1 区域地质
-
江南造山带位于华南板块中部(图1a),是扬子与华夏地块在中元古代晚期至新元古代早期碰撞的结果(Li et al.,2009),是中国重要的金(多)金属成矿带,该区的金(多)金属矿床和矿化点主要分布在NE向深大断裂带和近EW向韧性剪切带的附近,矿体赋存在新元古代浅变质地层内的层间破碎带之中,有“江南金腰带”的美称,是研究中国特色的陆内成矿作用的理想场所(Xu et al.,2017)。
-
位于江南造山带中部的湘东北地区是湖南省重要的金成矿区之一(图1a)。在该地区已发现了三大金矿床:黄金洞金矿床、万古金矿田与醴陵金矿床(Xu et al.,2017)。该区域的出露地层包括早中新元古代冷家溪群和板溪群变质基底,以及古生代至新生代沉积岩。冷家溪群为低级变质浊积岩,由变质粉砂岩和变质杂砂岩组成(锆石 U–Pb 年龄:860~820 Ma)(高林志等,2011;孙海清等,2012; 孟庆秀等,2013)。冷家溪群被砂岩、板岩、千枚岩、长英质凝灰岩和砾岩组成的板溪群变质碎屑岩不整合覆盖(韩凤彬等,2010;柳清琦等,2023)。冷家溪群和板溪群是湘东北大多数金矿床的主要围岩,基底上覆的不整合面为震旦系—志留系和泥盆系—三叠系砂质页岩、砾岩和碳酸盐岩,以及白垩系 — 第四系砂岩、砾岩和杂砂岩(Deng et al., 2017)。从新元古代到中生代,在湘东北地区存在4 期岩浆活动,分别为新元古代、晚志留世、三叠纪、晚侏罗世—早白垩世(图1b)。新元古代花岗岩类包括长三背和葛藤岭岩体(锆石 U-Pb 年龄:早于 845 Ma)(Deng et al.,2019),而晚志留世花岗岩类包括板杉铺黑云母二长花岗岩和宏夏桥黑云母花岗闪长岩(锆石 U-Pb 年龄:423~421 Ma)(李建华等,2015)。三叠纪侵入岩以王仙花岗闪长岩为代表(锆石 U-Pb 年龄:(224.7±4.4)Ma)(杨立志等, 2018)。晚侏罗世—早白垩世花岗岩(155~144 Ma) 包括幕阜山、望湘、金井、连云山、七宝山和焦西岭 (Wang et al.,2014,2016)。区域构造主要包括 3 个韧性剪切带和盆岭构造(图1b)。湘东北万古金矿区内先后经历了 NNE 向挤压、SN 向挤压、NW 向挤压、SN 向挤压、NWW 向挤压、NW-SE 向伸展、NE 向挤压,7期变形事件(吴能杰等,2023)。金矿床在空间上集中在区域NNE走向的断层附近,这些断层为金矿床的一级构造控制。然而,金矿化主要赋存于二级或三级断层内,如NNE和NW向断层。
-
图1 湘东北地区大地构造位置(a,据Chen and Jahn.,1998修改)及区域地质图(b,据Xu et al.,2017修改)
-
1.2 矿床地质
-
江东金矿床位于平江县万古金矿田内(图1b)。矿区出露地层简单,主要包括新元古代冷家溪群坪原组,上白垩统戴家坪组砂岩、砾岩及第四系。冷家溪群坪原组是江东金矿床主要的赋矿围岩,从上至下分为3层:(1)含粗砂质板岩和粉砂质板岩;(2) 灰绿色板岩及粉砂质板岩,间夹含粉砂质铁质板岩;(3)粉砂质板岩,石英粉砂与绢云母等黏土矿物相间组成条带状,条带宽度约为3~10 mm。矿区构造以NW向断裂为主,该断裂在加里东期形成,然后在燕山期活化,与成矿关系密切(Zhou et al., 2021)。矿区内未发现岩浆岩侵入体(图2a)。
-
矿体分布在 NW 向断裂中,赋矿围岩为新元古代冷家溪群坪原组(图2a)。矿体Ⅰ分布于摇钱坡 —灵官庙一带,地表出露长约700 m,出露标高100~125 m,东西两端由第四系及剥蚀形成的红层覆盖,矿脉受构造破碎带控制,走向为 NW 向,倾向为 NE 向,倾角57°~72°,厚度0.53~6.49 m,平均厚1. 05 m,蚀变带宽 0.7~20. 0 m (图2b)。矿体Ⅱ为隐伏矿脉,位于Ⅰ号脉的上盘,与Ⅰ号矿脉近平行产出,平距 50~100 m,最高控制标高为-32 m,倾向为NE向,倾角 50°~76°,厚度 0.65~25.63 m,规模较大,受构造破碎带控制,走向为 NW 向,沿走向、倾向均具舒缓波状变化(图2b)。
-
江东金矿床的矿石类型主要包括浸染状蚀变岩型(图3a)、石英-硫化物脉型(图3b)以及构造角砾岩型(图3c、d)。浸染状蚀变岩型矿石主要发育在石英-硫化物脉型矿石的两侧,黄铁矿和毒砂主要呈浸染状分布(图3a)。早期形成的石英脉因后期构造破碎作用产生裂隙,后经成矿流体充填,形成层压式石英-硫化物脉(图3b)。构造角砾岩型矿石发育较少,主要包括石英-硫化物脉胶结围岩角砾和早期贫矿石英脉胶结围岩角砾(图3c、d)。围岩蚀变主要包括硅化、绢云母化、绿泥石化和碳酸盐化。
-
图2 江东金矿床地质图(a)及0号勘探线剖面图(b)(据李建斌等,2020修改)
-
根据矿脉之间的穿插关系和矿物共生组合特征,将江东金矿床的成矿过程分为 4 个阶段(图4~5):(I)石英-白钨矿阶段,主要由乳白色石英脉和白钨矿组成(图4a、d),属于金成矿前阶段;(II)石英-黄铁矿阶段,主要由乳白色石英脉和粗颗粒的黄铁矿组成(图4a、e);(III)石英-多金属硫化物-自然金阶段,该阶段的脉体切穿阶段2的脉体,主要由烟灰色石英、细粒毒砂和黄铁矿组成(图4b、c、f、g),还含少量的黄铜矿、方铅矿、闪锌矿、黝铜矿和自然金等金属矿物(图4b、h、i);(IV)石英-方解石阶段,该阶段的脉体切穿阶段 3 的脉体(图4c),主要由石英和方解石组成,未发现金属矿物,属于金成矿后阶段。
-
图3 江东金矿床矿石类型
-
a—蚀变岩型矿石;b—石英-硫化物脉型;c、d—构造角砾岩型
-
2 样品采集与测试分析方法
-
本文采集江东金矿床86件样品用于研究,优选其中10件有代表性样品,采样位置及样品描述见表1,将这些样品磨制成厚度为 0.2 mm 双面抛光的薄片,选取有代表性的黄铁矿进行背散射成像和 LA-ICP-MS微量元素含量分析。
-
为了区分黄铁矿的类型,在湖南微纳新材料科技有限公司进行 SEM-BSE 成像分析,分析仪器为 FEI Nova230型扫描电镜,光斑大小为1~3 µm,加速电压和电流强度分别为15 kV和50 µA,每幅图像都是经过90 s累计后采集的。
-
图4 江东金矿床不同阶段矿脉之间的穿插关系及矿物组合特征
-
a—I阶段矿脉被II阶段矿脉切穿;b—I阶段、III阶段、IV阶段矿脉穿插关系;c—III阶段矿脉被石英-碳酸盐脉切穿;d—白钨矿呈碎裂结构;e— 黄铁矿呈核边结构;f—自形的毒砂和黄铁矿呈浸染状分布在蚀变围岩中;g~i—黄铁矿、毒砂、方铅矿、黄铜矿、黝铜矿、自然金共生; Py—黄铁矿;Qz—石英;Sch—白钨矿;Apy—毒砂;Dol—白云石;Gn—方铅矿;Ccp—黄铜矿;Ttr—黝铜矿;Au—自然金
-
图5 江东金矿床成矿期次及矿物共生序列
-
黄铁矿的微区原位微量元素含量测试在广州市拓岩检测技术有限公司利用 LA-ICP-MS 完成。实验室采用 New Wave Research 193nm ArF 准分子激光剥蚀系统,与Thermo Scientific iCap-RQ 四极杆型电感耦合等离子体质谱仪(ICP-MS)联用。准分子激光发生器产生的深紫外光束经过匀化光路聚焦于样品表面,激光束斑直径为 30 µm,频率为 6 Hz,能量密度为 3.5 J/cm2,激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度。黄铁矿微区原位微量元素含量测试和处理过程中采用玻璃标准物质NIST SRM610和MASS-1进行多外标无内标校正(Liu et al.,2008),采用比例标准物质 SRM612 和 STDGL3-52 作为监控样品(Wilson et al.,2002;Danyushevsky et al.,2011)。每个时间分辨分析数据包括大约 40 s 空白信号和 45 s 样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正以及元素含量计算)采用软件 IOLITE的 3D Trace Elements DRS 模式完成(Paton et al.,2011)。
-
3 分析结果
-
3.1 黄铁矿的类型
-
黄铁矿是江东金矿床主要的载金矿物,在乳白色石英脉、蚀变围岩和烟灰色石英脉中均有分布。根据黄铁矿的形态、颗粒大小、结构和矿物共生组合,将其划分为 Py1a、Py1b、Py2a 和 Py2b 共 4 种类型(图6)。
-
Py1a 表面较为光滑,孔隙和裂隙均不发育,主要呈他形或半自形粒状结构,粒径通常大于200 µm (图6a)。Py1b 呈多孔状,粒径 10~200 µm 不等,常见于乳白色石英脉和蚀变围岩中,在乳白色石英脉中,与 Py1a 的边界平整,通常作为增生加大边包裹 Py1a(图6a)。在背散射图像中,Py1a和Py1b并无衬度区别,成分均匀(图6a);在蚀变围岩或烟灰色石英脉中,通常作为黄铁矿的核部,并被 Py2a 或 Py2b 包裹,在背散射图像中,其衬度较Py2a和Py2b暗(图6c、f)。Py2a 呈自形状,粒径为 50~200 µm,与粗颗粒毒砂一起呈浸染状产于蚀变围岩中(图6b、c)。 Py2b常见于烟灰色石英脉中,呈自形或半自形粒状结构,粒径 10~200 µm,与毒砂及其他硫化物共生 (图6d、e、f)。在背散射图像中,单颗粒Py2b并无衬度变化,成分均匀(图6d、e)。
-
3.2 黄铁矿微量元素组成
-
本研究对江东金矿床中的黄铁矿进行了 85 个 LA-ICP-MS 点分析,包含 18 个 Py1a,19 个 Py1b, 27 个 Py2a 和 11 个 Py2b,测试结果详细见表1,微量元素含量变化见图7。
-
图6 江东金矿床不同世代黄铁矿的背散射图像
-
a—Py1a和Py1b之间边界平直;b—自形的Py2a和Apy;c—Py1b被Py2a包裹;d~e—Py2b、 Apy和Sp共生;f—Py1b被Py2b包裹;Py—黄铁矿; Apy—毒砂;Sp—闪锌矿
-
Py1a中各元素含量均显示较低的特征,其中Co 含量为1.35~59.4 µg/g(中位数:6.38 µg/g),Ni含量为 2.63~59.9 µg/g(中位数:18.2 µg/g),Cu 含量为 0.79~207 µg/g(中位数:16.5 µg/g),As 含量为 4.40~1483 µg/g(中位数:220 µg/g),Ag 含量为 0. 01~1.39 µg/g(中位数:0.34 µg/g),Sb 含量为 1.29~240 µg/g(中位数:54.4 µg/g),Au 含量为 0. 01~0.47 µg/g(中位数:0.12 µg/g),Pb 含量为 3.93~1212 µg/g(中位数:239 µg/g),Bi含量为0. 01~11.54 µg/g(中位数:0.83 µg/g),Zn含量大多低于检测限。
-
Py1b与Py1a相比,As和Au含量变化不大,分别为 4.71~1310 µg/g(中位数:140 µg/g)和 0.13~1.57 µg/g(中位数:0.55 µg/g)。其余元素(Co、Ni、Cu、 Zn、Ag、Sb、Pb、Bi)含量均显著增加。
-
Py2a 与 Py1b 相比,As 含量(18748~59918 µg/g; 中位数:49491 µg/g)和 Au含量(0.12~282 µg/g;中位数:30.6 µg/g)显著增加,而 Cu、Zn、Ag、Sb、Pb、Bi 含量略有降低。
-
Py2b 的 Au 含量是所有类型黄铁矿中最高的,为 52.7~327 µg/g(中位数:157 µg/g),且具有高 As 含量(36239~59817 µg/g;中位数:53080 µg/g)的特征。与 Py2a相比,Co和 Ni含量略有下降,其余元素 (Cu、Zn、Ag、Sb、Pb、Bi)含量变化不大。
-
续表1
-
续表1
-
注:“-”表示低于检测限
-
图7 江东金矿床不同世代黄铁矿的微量元素含量箱型图
-
4 讨论
-
4.1 微量元素赋存形式
-
微量元素主要以3种形式赋存于黄铁矿中:(1) 微米级矿物包裹体;(2)纳米级矿物包裹体;(3)以硫化物固溶体赋存于黄铁矿晶格中(Thomas et al., 2011;Ciobanu et al.,2012;Gregory et al.,2015)。其中,类质同象替换是微量元素赋存的一种普遍机制,是众多微量元素的载体(Large et al.,2009; Deditius et al.,2011;Reich et al.,2013)。当矿物包裹体大于 100nm 时,利用剥蚀信号曲线可以有效地将其区分(Cook et al.,2013)。然而,当矿物包裹体以纳米级均匀分布在黄铁矿晶格内时,剥蚀信号会呈光滑平整的曲线,对微量元素的赋存状态判断造成影响,而通过对微量元素进行相关性分析可以有效区别微量元素是以纳米级包裹体形式存在还是以固溶体形式赋存在黄铁矿晶格中(Voute et al.,2019)。
-
图8 江东金矿床各世代黄铁矿的微量元素LA-ICP-MS剥蚀曲线
-
a—II阶段黄铁矿Py1a;b—II阶段黄铁矿Py1b;c—III阶段黄铁矿Py2a;d—III阶段黄铁矿Py2b
-
江东金矿床各世代黄铁矿 Au 元素的剥蚀信号曲线都相对平坦(图8),表明 Au元素在黄铁矿中主要以固溶体金(Au+)和纳米金(Au0)的形式存在,通常可用As的含量对Au的赋存状态进行判别。不同类型黄铁矿中 Au 与 As 整体上呈现正相关性(图9a)。根据 Reich et al.(2005)提出的 Au 溶解度极限,表明江东金矿床中 Au 主要以固溶体金(Au+)的形式赋存于黄铁矿晶格中(图9a)。
-
Cu既能以Cu2+ 替代Fe2+ 的形式进入黄铁矿晶格中,又能通过 Au3+ + Cu+ ↔2Fe2+的形式替换 Fe2+ (Voute et al.,2019)。Cu-Au 相关性图显示,江东金矿床黄铁矿的 Cu/Au 比值整体都大于 1(图9b),说明 Cu 主要以 Cu2+ 替代 Fe2+。Py1b 的 Cu 元素在剥蚀信号图中显示异常峰,表明存在黄铜矿包裹体 (图8b)。Py2a 的Cu元素在剥蚀信号图中显示异常峰且与Sb元素有一定的相关性,表明存在黝铜矿包裹体(图8c)。
-
Pb和 Zn通常以含铅矿物包裹体(如方铅矿、闪锌矿)的形式赋存于黄铁矿中(Koglin et al.,2010),在剥蚀信号图中可以看到Pb、Zn元素存在局部异常峰(图8b~d)。同时,各世代黄铁矿的 Bi 与 Pb 有很明显的正相关关系(图9c),表明Bi元素可能以固溶体的形式存在于方铅矿晶格中(Gregory et al., 2015)。
-
Co和Ni作为亲硫元素,通常以阳离子的形式类质同象替代Fe(Koglin et al.,2010)。江东金矿床不同类型黄铁矿微量元素剥蚀信号图显示, Co 和 Ni 信号相对平坦,表明在黄铁矿中,Co、Ni主要以类质同象的形式替代Fe。黄铁矿的Co/Ni比值通常可以用来判断黄铁矿的成因(Bralia et al.,1979;Clark et al.,2004),通常认为,沉积型黄铁矿的 Co/Ni 比值主要位于 0. 01~2 之间,热液黄铁矿的 Co/Ni 比值则要大于这个范围值(Gregory et al.,2015)。通过本次研究测试发现,江东金矿床4种黄铁矿的Co/Ni比值基本小于 1(图9d),这可能是江东金矿床成矿过程中有变质流体的参与(Zhang et al.,2018,Deng et al.,2020),成矿流体与围岩发生了强烈的水岩反应,从而形成了围岩蚀变(图4f),因此 Co/Ni值表现出较低的特征。
-
图9 江东金矿床黄铁矿微量元素相关性图解
-
a—Au-As相关性图解(底图据Reich et al.,2005修改);b—Au-Cu相关性图解;c—Bi-Pb相关性图解;d—Ni-Co相关性图解
-
4.2 黄铁矿的组构对成矿流体演化的制约
-
早期的成矿流体以 Py1a 的化学特征为代表, Py1a 在乳白色石英脉中零星分布(图4a)。根据 Py1a 的微量元素含量,早期成矿流体中 Co、Ni、Cu、 Zn、As、Ag、Au、Bi 含量较低,Sb 和 Pb 含量适中(图7)。均匀的背散射图像表明(图6a),Py1a是在稳定的流体环境中沉淀的(Román et al.,2019)。Py1b 与 Py1a 的微量元素含量有较大差别,主要表现在 Co、Ni元素较为富集(图7),Py1b的多孔特征和丰富的硅酸盐包裹体表明其是在新的成矿流体(富 Co、 Ni)环境中快速结晶的(Putnis,2009)。
-
浸染状蚀变岩中的 Py2a 和烟灰色石英脉中的 Py2b 与 Py1b 相比富集 As 和 Au(图7),且形成典型的溶解-再沉淀结构,主要证据有:(1)Py1b 表现出多孔和富含硫化物包裹体的结构;(2)接触边界呈不规则的港湾状(图6c、f)。这种结构表明,一种新的成矿流体(富集 As 和 Au)溶解了早期的 Py1b,在这个过程中,先前结合在 Py1b 中的元素(Cu、Pb、Sb 等)被释放、解耦并作为硫化物包裹体和晶格结合元素再沉淀为Py2a和Py2b(Putnis,2009)。
-
在江东金矿床,矿石类型既以含金石英-硫化物脉的形式存在,又以浸染状矿石的形式存在于脉体两侧蚀变围岩中(图3a、b),且 Py2b 的 Au 含量高于Py2a(图7)。沈关文等(2022)通过毒砂温度计限定了万古金矿田从浸染状矿化到石英-硫化物脉矿化,成矿流体硫逸度从 10-9.7 ~10-7降低到 10-11.5 ~10-8.6。这一特征表明,围岩硫化可能是江东金矿床金沉淀的另一重要机制。围岩的硫化作用会将Fe2+ 释放到成矿流体中,形成载金硫化物,从而导致流体中硫逸度的有效降低,Au(HS)2- 的不稳定,金沉淀于毒砂和黄铁矿内(Heinrich,2005;Keith et al.,2022)。
-
4.3 对矿床成因的指示
-
前人研究认为万古金矿田成矿作用形成于燕山期(142~130 Ma;Deng et al.,2017)。矿床成因为造山型金矿床或与侵入体有关的金矿床(柳德荣等,1994;毛景文和李红艳,1997;毛景文等,1997; Mao et al.,2002;董国军等,2008)。与侵入体有关的金矿床是基于其与燕山期花岗岩密切的空间关系、H-O 同位素、He-Ar 同位素,表明成矿流体为地幔/岩浆来源(毛景文和李红艳,1997;Mao et al., 2002)。但S-Pb同位素表明万古金矿田的成矿物质具有变质来源(柳德荣等,1994;Deng et al.,2017)。万古金矿田的构造控矿(矿体赋存于北西向断裂中)、矿物组合(黄铁矿、毒砂、少量的其他多金属硫化物及自然金)、蚀变类型(硅化、绢云母化、绿泥石化和碳酸盐化)、赋矿围岩(低级变质岩)以及流体包裹体的中低温度(168~276℃)、低盐度(5~15.4 NaCl equiv.)等特征都与造山型金矿床一致(Groves et al.,1998;Goldfarb et al.,2001;Deng et al., 2020)。然而造山型金矿床在时间和空间上与增生造山或碰撞造山密切相关的(Groves et al.,1998),这与湘东北地区在 142~130 Ma 的伸展构造背景不一致(Deng et al.,2019)。基于上述特征,Deng et al (2020)认为万古地区金成矿与加里东期和燕山期两期陆内构造-岩浆作用有关,先存的加里东期构造和石英脉,在燕山期重新发生活化,造成石英脉发生脆性破碎,被后期的燕山期热液脉体叠加成矿,因此将其称为陆内活化型金矿床。
-
本研究显示,江东金矿床黄铁矿中 Co、Ni 主要类质同象替代 Fe;Co/Ni 比值为 0.11~4.83,大部分小于1;Au主要以固溶体金(Au+)的形式赋存于黄铁矿晶格内;Cu主要以类质同象的形式替换 Fe;Pb和 Zn 主要以方铅矿、闪锌矿的包裹体形式赋存于黄铁矿内等特征。上述黄铁矿微量元素特征和造山型金矿床以及与侵入体有关的金矿床均有相似之处 (Cook et al.,2013;Li et al.,2021;Zhang et al., 2022;曹根深等,2023)。多世代黄铁矿的演化过程为(图10):(1)石英-黄铁矿阶段贫Co、Ni、As、Au的流体发生稳定沉淀,形成粗颗粒自形的 Py1a;(2)石英-黄铁矿阶段后期,在新的富 Co、Ni,贫 As、Au 流体的环境下发生快速结晶,造成多孔的 Py1b 的沉淀;(3)在石英-多金属硫化物-金阶段,富As、Au的成矿流体发生围岩硫化、溶解-再沉淀等作用,在蚀变围岩中形成浸染状自形的含 Au 黄铁矿(Py2a)和烟灰色石英脉中半自形—他形的含 Au 黄铁矿 (Py2b),由于溶解-再沉淀作用,Py2a和Py2b都继承了Py1b富Co、Ni含量的特点,也可能活化了Py1b中的Au。因此,认为江东金矿床金成矿过程具有多阶段成矿特征,溶解-再沉淀、围岩硫化作用是江东金矿床主要的金沉淀机制,具体的矿床成因类型有待于进一步研究。
-
图10 江东金矿床中黄铁矿的形成机制
-
5 结论
-
(1)江东金矿床是受 NW 向断裂控制的大型金矿床,可划分为4个成矿阶段:石英-白钨矿阶段、石英-黄铁矿阶段、石英-多金属硫化物-自然金阶段和石英-方解石阶段。识别出4种类型的黄铁矿:石英-黄铁矿阶段,粗颗粒自形状且贫 Co、Ni、As、Au 的 Py1a 和多孔且富 Co、Ni 贫 As、Au 的 Py1b;石英-多金属硫化物-自然金阶段,产于蚀变围岩中的自形状且富 As、Au 的 Py2a 和烟灰色石英脉中的半自形—他形状且富As、Au的Py2b。
-
(2)黄铁矿的微量元素分析表明,Pb、Zn、Cu、Sb 主要以硫化物包裹体的形式赋存于黄铁矿中,而Co、Ni以类质同象替代的形式赋存于黄铁矿中。不可见金主要以固溶体金(Au+)的形式赋存于黄铁矿晶格中,且其富集和As关系密切。
-
(3)黄铁矿的组构表明,溶解-再沉淀、围岩硫化作用是江东金矿床金主要的沉淀机制。
-
参考文献
-
Barker S L, Hickey K A, Cline J S, Dipple G M, Kilburn M R, Vaughan J R, Longo A A. 2009. Uncloaking invisible gold: Use of nanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposits[J]. Economic Geology, 104(7): 897-904.
-
Bralia A, Sabatini G, Troja F. 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 14(3): 353-374.
-
Chen J, Jahn B. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence [J]. Tectonophysics, 284(1): 101-133.
-
Ciobanu C L, Cook N J, Pring A, Brugger J, Danyushevsky L V, Shimizu M. 2009. 'Invisible gold' in bismuth chalcogenides[J]. Geochimica et Cosmochimica Acta, 73(7): 1970-1999.
-
Ciobanu C L, Cook N J, Utsunomiya S, Kogagwa M, Green L, Gilbert S, Wade B. 2012. Gold-telluride nanoparticles revealed in arsenic-free pyrite[J]. American Mineralogist, 97(8/9): 1515-1518.
-
Clark C, Grguric B, Mumm A S. 2004. Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences, northeastern South Australia[J]. Ore Geology Reviews, 25(3/4): 237-257.
-
Cook N J, Ciobanu C L, Mao J W. 2009. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China)[J]. Chemical Geology, 264(1/4): 101-121.
-
Cook N J, Ciobanu C L, Meria D, Silcock D, Wade B. 2013. Arsenopyrite-Pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements[J]. Economic Geology, 108(6): 1273-1283.
-
Danyushevsky L, Robinson P, Gilbert S, Norman M, Large R, Mcgoldrick P, Shelley M. 2011. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects[J]. Geochemistry Exploration Environment Analysis, 11(1): 51-60.
-
Deditius A P, Utsunomiya S, Reich M, Kesler S E, Ewing R C, Hough R, Walshe J. 2011. Trace metal nanoparticles in pyrite[J]. Ore Geology Reviews, 42(1): 32-46.
-
Deng T, Xu D R, Chi G X, Wang Z L, Jiao Q Q, Ning J T, Dong G J, Zou F H. 2017. Geology, geochronology, geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province, Jiangnan Orogen, South China[J]. Ore Geology Reviews, 88: 619-637.
-
Deng T, Xu D R, Chi G X, Zhu Y H, Wang Z L, Chen G W, Li Z H, Zhang J L, Ye T W, Yu D S. 2019. Revisiting the ca. 845-820-Ma S-type granitic magmatism in the Jiangnan Orogen: New insights on the Neoproterozoic tectono-magmatic evolution of South China[J]. International Geology Review, 61(4): 383-403.
-
Deng T, Xu D R, Chi G X, Wang Z L, Chen G W, Zhou Y Q, Li Z H, Ye T W, Yu D H. 2020. Caledonian (Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen: A case study on gold deposits in northeastern Hunan, South China[J]. Ore Geology Reviews, 124: 103586.
-
Goldfarb R J, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time: A global synthesis[J]. Ore Geology Reviews, 18(1/2): 1-75.
-
Gregory D D, Large R R, Halpin J A, Baturina E L, Lyons T W, Wu S, Danyushevsky L, Sack P J, Chappaz A, Maslennikov V V. 2015. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 110(6): 1389-1410.
-
Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G, Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 13(1): 7-27.
-
Heinrich C A. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study[J]. Mineralium Deposita, 39(8): 864-889.
-
Keith M, Haase K M, Chivas A R, Klemd R. 2022. Phase separation and fluid mixing revealed by trace element signatures in pyrite from porphyry systems[J]. Geochimica et Cosmochimica Acta, 329: 185-205.
-
Keith M, Smith D J, Doyle K, Holwell D A, Jenkin G R T, Barry T L, Becker J, Rampe J. 2020. Pyrite chemistry: A new window into Au-Te ore-forming processes in alkaline epithermal districts, Cripple Creek, Colorado[J]. Geochimica et Cosmochimica Acta, 274: 172-191.
-
Koglin N, Frimmel H E, Minter W L, Brätz H. 2010. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits[J]. Mineralium Deposita, 45(3): 259-280.
-
Large R R, Danyushevsky L, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh B, Foster J. 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-Style sediment-hosted deposits[J]. Economic Geology, 104(5): 635-668.
-
Large R R, Maslennikov V V. 2020. Invisible gold paragenesis and geochemistry in pyrite from orogenic and sediment-hosted gold deposits[J]. Minerals, 10(4): 339.
-
Li W, Cook N J, Xie G Q, Mao J W, Ciobanu C L, Fu B. 2021. Complementary textural, trace element, and isotopic analyses of sulfides constrain ore-forming processes for the slate-hosted Yuhengtang Au Deposit, South China[J]. Economic Geology, 116(8): 1825-1848.
-
Li X H, Li W X, Li Z X, Lo C H, Wang J, Ye M F, Yang Y H. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174(1/2): 117-128.
-
Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34-43.
-
Mao J, Kerrich R, Li H, Li Y. 2002. High 3He/4He ratios in the Wangu gold deposit, Hunan province, China: Implications for mantle fluids along the Tanlu deep fault zone[J]. Geochemical Journal, 36(3): 197-208.
-
Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 26(12): 2508-2518.
-
Putnis A. 2009. Mineral replacement reactions[J]. Reviews in mineralogy and geochemistry, 70(1): 87-124.
-
Reich M, Deditius A, Chryssoulis S, Li J W, Ma C Q, Parada M A, Barra F, Mittermayr F. 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study[J]. Geochimica et Cosmochimica Acta, 104: 42-62.
-
Reich M, Kesler S E, Utsunomiya S, Palenik C S, Chryssoulis S L, Ewing R C. 2005. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 69(11): 2781-2796.
-
Román N, Reich M, Leisen M, Morata D, Barra F, Deditius AP. 2019. Geochemical and micro-textural fingerprints of boiling in pyrite[J]. Geochimica et Cosmochimica Acta, 246: 60-85.
-
Steadman J A, Large R R, Olin P H, Danyushevsky L V, Meffre S, Huston D, Fabris A, Lisitsin V, Wells T. 2021. Pyrite trace element behavior in magmatic-hydrothermal environments: An LA-ICPMS imaging study[J]. Ore Geology Reviews, 128: 103878.
-
Thomas H V, Large R R, Bull S W, Maslennikov V, Berry R F, Fraser R, Froud S, Moye R. 2011. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore genesis[J]. Economic Geology, 106(1): 1-31.
-
Ulrich T, Long D, Kamber B, Whitehouse M. 2011. In situ trace element and sulfur isotope analysis of pyrite in a Paleoproterozoic gold placer deposit, Pardo and Clement townships, Ontario, Canada[J]. Economic Geology, 106(4): 667-686.
-
Voute F, Hagemann S G, Evans N J, Villanes C. 2019. Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: Implication for paragenesis, fluid source, and gold deposition mechanisms[J]. Mineralium Deposita, 54(7): 1077-1100.
-
Wang J Q, Shu L S, Santosh M. 2016. Petrogenesis and tectonic evolution of Lianyunshan complex, South China: Insights on Neoproterozoic and late Mesozoic tectonic evolution of the central Jiangnan Orogen[J]. Gondwana Research, 39: 114-130.
-
Wang L X, Ma C Q, Zhang C, Zhang J Y, Marks M A W. 2014. Genesis of leucogranite by prolonged fractional crystallization: A case study of the Mufushan complex, South China[J]. Lithos, 206: 147-163.
-
Wilson S A, Ridley W I, Koenig A E. 2002. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique[J]. Journal of Analytical Atomic Spectroscopy, 17(4): 406-409.
-
Xu D R, Deng T, Chi G X, Wang Z L, Zou F H, Zhang J L, Zou S H. 2017. Gold mineralization in the Jiangnan Orogenic Belt of South China: Geological, geochemical and geochronological characteristics, ore deposit-type and geodynamic setting[J]. Ore Geology Reviews, 88: 565-618.
-
Zhang L, Yang L Q, Groves D I, Liu Y, Sun S C, Qi P, Wu S G, Peng J S. 2018. Geological and isotopic constraints on ore genesis, Huangjindong gold deposit, Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 99: 264-281.
-
Zhang Y C, Shao Y J , Liu Q Q, Zhang X, Zhan Y D, Wang C, Wu H H, Sun J. 2022. Pyrite textures, trace element and sulfur isotopes of Yanlinsi slate-hosted deposit in the Jiangnan Orogen, South China: Implications for gold mineralization processes[J]. Ore Geology Reviews, 148: 105029.
-
Zhou Y Q, Xu D R, Dong G J, Chi G X, Deng T, Cai J X, Ning J T, Wang Z L. 2021. The role of structural reactivation for gold mineralization in northeastern Hunan Province, South China[J]. Journal of Structural Geology, 145: 104306.
-
曹根深, 张宇, 陈华勇. 2023. 造山型金矿床黄铁矿微量元素对成矿机制的指示[J]. 岩石学报, 39(8): 2330-2346.
-
董国军, 许德如, 王力, 陈广浩, 贺转利, 符巩固, 吴俊, 王智琳. 2008. 湘东地区金矿床矿化年龄的测定及含矿流体来源的示踪——兼论矿床成因类型[J]. 大地构造与成矿学, (4): 482-491.
-
高林志, 陈峻, 丁孝忠, 刘耀荣, 张传恒, 张恒, 刘燕学, 庞维华, 张玉海. 2011. 湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄——对武陵运动的制约[J]. 地质通报, 30(7): 1001-1008.
-
韩凤彬, 常亮, 蔡明海, 刘孙泱, 张诗启, 陈艳, 彭振安, 徐明. 2010. 湘东北地区金矿成矿时代研究[J]. 矿床地质, 29(3): 563-571.
-
李建斌, 张宗栋, 王兵胜, 雒小荣, 李志新, 高顺, 李广, 陈阡然. 2020. 湖南省平江县江东金矿床地质特征及找矿标志[J]. 世界有色金属, (11): 59-62.
-
李建华, 张岳桥, 董树文, 马之力, 李勇. 2015. 湘东宏夏桥和板杉铺岩体LA-MC-ICPMS锆石U-Pb年龄及地质意义[J]. 地球学报, 36(2): 187-196.
-
柳德荣, 吴延之, 刘石年. 1994. 平江万古金矿田地球化学研究[J]. 湖南地质, (2): 83-90
-
柳清琦, 黄小强, 曾乐, 万海辉. 2023. 湘东北黄金洞地区黄土嘴金矿床地质特征及成矿规律[J]. 矿产勘查, 14(1): 29-39.
-
毛景文, 李红艳. 1997. 江南古陆某些金矿床成因讨论[J]. 地球化学, (5): 71-81.
-
毛景文, 李延河, 李红艳, 王登红, 宋鹤彬. 1997. 湖南万古金矿田地幔流体成矿的氦同位素证据[J]. 地质论评, (6): 646-649.
-
孟庆秀, 张健, 耿建珍, 张传林, 黄文成. 2013. 湘中地区冷家溪群和板溪群锆石U-Pb年龄、Hf同位素特征及对华南新元古代构造演化的意义[J]. 中国地质, 40(1): 191-216.
-
沈关文, 张良, 孙思辰, 宇天伟, 李增胜, 吴圣刚, 陈俊辉, 申颖. 2022. 江南造山带万古金矿床含金硫化物组构与金沉淀机制[J]. 岩石学报, 38(1): 91-108.
-
石苏东, 邹滔, 曾兴宝, 祁翼, 杨洋. 2023. 冀东下营坊金矿床黄铁矿原位微量元素地球化学特征及其指示意义[J]. 矿产勘查, 14(1): 9-18.
-
孙海清, 黄建中, 郭乐群, 陈俊. 2012. 湖南冷家溪群划分及同位素年龄约束[J]. 华南地质与矿产, 28(1): 20-26.
-
吴能杰, 柏道远, 李彬等. 2023. 湘东北万古金矿区变形序列及其对控矿构造属性的约束[J]. 桂林理工大学学报, 43(2): 161-175.
-
杨立志, 吴湘滨, 胡斌, 李杰, 王玺凯. 2018. 湘东王仙花岗闪长斑岩的岩石地球化学、锆石U-Pb年代学和Hf同位素组成[J]. 中南大学学报(自然科学版), 49(9): 2280-2291.
-
摘要
江东金矿床位于湘东北地区万古金矿田,赋存于新元古代冷家溪群浅变质岩中,矿体受NW向断裂控制,金资源量约12. 9 t,成矿规模大,能有效代表万古金矿田的成矿特征。目前,对于该矿床细致的矿相学、元素地球化学以及金的富集机制研究相对较少,限制了对其成矿过程的理解。本文在野外地质工作的基础上,对江东金矿床的成矿阶段进行了划分,通过背散射图像和LA-ICP-MS微区原位分析,获得江东金矿床不同世代黄铁矿的微量元素特征。研究表明,江东金矿床成矿阶段划分为:石英-白钨矿阶段(I)、石英-黄铁矿阶段(II)、石英-多金属硫化物-金阶段(III)和石英-方解石阶段(IV)。根据黄铁矿的结构和微量元素特征,识别出 4种类型的黄铁矿:第 II阶段的粗颗粒自形的 Py1a(贫 Co、Ni、As、Au)和多孔 Py1b(富 Co、 Ni,贫As、Au);第III阶段的Py2a(蚀变围岩中,富As、Au)以及Py2b(烟灰色石英脉中,富As、Au)。不可见金主要以固溶体金(Au+ )的形式赋存于黄铁矿晶格中,且其富集和 As关系密切。结合前人研究,推断溶解-再沉淀、围岩硫化作用是江东金矿床主要的金沉淀机制。
Abstract
The Jiangdong gold deposit is located in the Wangu goldfield in northeast Hunan, hosted in the lowgrade metamorphic rock of the of the Neoproterozoic Lengjiaxi Group, and the orebody is controlled by the NWtrending fault, with a gold resource of about 12. 9 t, which can effectively represent the metallogenic characteristics of the Wangu gold field. At present, there are relatively few studies on the detailed mineralogy, element geochemistry and gold enrichment mechanism of this deposit, which limit the understanding of its mineralization process. In this paper, on the basis of field geological work, the mineralization stages were divided, and the trace element characteristics of pyrite in different generations of Jiangdong gold deposit were obtained by backscattered images and LA-ICP-MS in situ analysis. The study shows that the mineralization stages of Jiangdong gold deposit are divided into: quartz-scheelite stage (I), quartz-pyrite stage (II), quartz-polymetallic sulfide-natural gold stage (III) and quartz-calcite stage (IV). Based on the texture and trace element characteristics of pyrite, four genera- tions of pyrite were identified: coarse-grained euhedral Py1a (Co, Ni, As, Au-poor) and porous Py1b (Co, Nirich As, Au-poor) in stage II; In stage III, euhedral Py2b (in altered wallrocks, As- and Au-rich) and subhedralanhedral and Py2b (in smoky gray quartz veins, As- and Au-rich). The Au-As relationship of pyrite shows that the invisible gold is mainly lattice gold (Au+ ) in pyrite and it is closely related to As. Combined with previous studies, it is concluded that dissolution-reprecipitation and wall rock alteration are the main gold precipitation mechanisms in Jiangdong gold deposit.