en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。

引用本文: 汤钰御,刘高杰,陈向平,谢建平,王鹏飞,王纪昆,王建青,冀建军. 2024. 中非铜矿带恩古巴群铜多金属矿床地质特征与找矿潜力 [J]. 矿产勘查,15(8):1445-1455.

Citation: Tang Yuyu,Liu Gaojie,Chen Xiangping,Xie Jianping,Wang Pengfei,Wang Jikun,Wang Jianqing,Ji Jianjun. 2024. Geological characteristics and prospecting potential of Cu polymetallic deposit in Nguba Group, Central African Copperbelt[J]. Mineral Exploration,15(8):1445-1455.

作者简介:

汤钰御,女,1998年生,硕士,助理工程师,主要从事矿产勘查和研究工作;E-mail: 767211123@qq.com。

通讯作者:

刘高杰,男,1986年生,高级工程师,主要从事战略性矿产勘查和研究工作;E-mail: 858627975@qq.com。

中图分类号:P617

文献标识码:A

文章编号:1674-7801(2024)08-1445-11

DOI:10.20008/j.kckc.202408009

参考文献
Armstrong R, Master S, Robb L. 2005. Geochronology of the Nchanga Granite, and constraints on the maximum age of the Katanga Supergroup, Zambian Copperbelt[J]. Journal of African Earth Science, 42(1): 41-60.
参考文献
Barron J. 2003. The Stratigraphy, Metamorphism, and Tectonic History of the Solwezi Area, Northwest Province, Zambia: Integrating Geological Field Observations and Airborne Geophysics in the Interpretation of Regional Geology[D]. Colorado: Colorado School of Mines.
参考文献
Batumike M, Cailteux J, Kampunzu A. 2007. Lithostratigraphy, basin development, base metal deposits, and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, central African Copperbelt[J]. Gondwana Research, 11(3): 432-447.
参考文献
Binda P, Eden J. 1972. Sedimentological evidence on the origin of the Precambrian Great Conglomerate (Kundelungu Tillite), Zambia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 12(3): 151-168.
参考文献
Broughton D, Rogers T. 2010. Discovery of the Kamoa copper deposit, Central African Copperbelt, D. R. C. [C]// Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries. Special Publications of the Society of Economic Geologists, 15(1): 287-298.
参考文献
Bull S, Selley D, Broughton D, Hitzman M, Cailteux J, Large R, McGoldrick P. 2011. Sequence and carbon isotopic stratigraphy of the Neoproterozoic Roan Group strata of the Zambian copperbelt[J]. Precambrian Research, 190(1/4): 70-89.
参考文献
Cailteux J, Kampunzu A, Lerouge C, Kaputo A, Milesi J. 2005. Genesis of sediment-hosted stratiform copper-cobalt deposits, Central African Copperbelt[J]. Journal of African Earth Sciences, 42(1): 134-158.
参考文献
Cailteux J, Kampunzu A, Lerouge C. 2007. The Neoproterozoic Mwashya-Kansuki sedimentary rock succession in the central African Copperbelt, its Cu-Co mineralisation, and regional correlations[J]. Gondwana Research, 11(3): 414-431.
参考文献
Decrée S, Deloule E, Putter T, Dewaele S, Mees F, Yans J, Marignac C. 2011. SIMS U-Pb dating of uranium mineralization in the Katanga Copperbelt: Constraints for the geodynamic context[J]. Ore Geology Reviews, 40(1): 81-89.
参考文献
Desouky H, Muchez P, Boyce A, Schneider J, Cailteux J, Dewaele S, Quadt A. 2010. Genesis of sediment-hosted stratiform copper-cobalt mineralization at Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo)[J]. Mineralium Deposita, 45(8): 735-763.
参考文献
Desouky H, Muchez P, Cailteux J. 2009. Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo[J]. Ore Geology Reviews, 36(4): 315-332.
参考文献
Gao B, Xie H, Ren J, Zhang Z, Ma H. 2024. Biomarker signatures and depositional environment of ore-bearing black shale in the Luishia Cu-Co deposit, Democratic Republic of Congo: Implications for regional copper mineralization[J]. Journal of African Earth Sciences, 213(1): 105-242.
参考文献
Gilchrist G. 2019. Evolving estimation techniques for an evolving world class stratiform copper deposit at Kamoa-Kakula, Democratic Republic of the Congo[J]. In Mining goes Digital, 192-200.
参考文献
Heijlen W, Banks D, Muchez P, Stensgard B, Yardley B. 2008. The Nature of mineralizing fluids of the Kipushi Zn-Cu deposit, Katanga, Democratic Repubic of Congo: Quantitative fluid inclusion analysis using Laser Ablation ICP-MS and bulk Crush-Leach methods[J]. Economic Geology, 103(7): 1459-1482.
参考文献
Hendrickson M, Hitzman M, Wood D, Humphrey J, Wendlandt R. 2015. Geology of the Fishtie deposit, Central Province, Zambia: Iron oxide and copper mineralization in Nguba Group metasedimentary rocks[J]. Mineralium Deposita, 50(6): 717-737.
参考文献
Hitzman M, Broughton D, Selley D, Woodhead J, Wood D, Bull S. 2012. The Central African Copperbelt: Diverse stratigraphic, structural, and temporal settings the world’s largest sedimentary copper district[C]// Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe. Society of Economic Geologists, 16: 487-514.
参考文献
Hitzman M, Kirkham R, Broughton D, Thorson J, Selley D. 2005. The sediment-hosted stratiform copper ore system[C]// Economic Geology 100th Anniversary Volume. Society of Economic Geologists, 609-642.
参考文献
Hnatyshin D, Tsuruoka S, Hitzman M, Creaser R. 2022. Cobalt mineralization age for the fishtie Cu-Co deposit in Zambia[C]// Goldschmidt 2022 Abstract, Honolulu.
参考文献
Hoffmann K, Condon D, Bowring S, Crowley J. 2004. U-Pb zircon dates for the Neoproterozoic Ghaub Formation, Namibia: constraints on Marinoan glaciation[J]. Geology, 32(9): 817-820.
参考文献
Ivanhoe Mines. 2016. Kamoa-Kakula Project now demonstrated to be the largest copper discovery ever made on the African continent[EB/OL]. 2024-05-30. https: //www. ivanhoemines. com/news-stories/news-release/kamoa-kakula-project-now-demonstrated-to-be- the-largest-copper-discovery-ever-made-on-the-african-continent.
参考文献
Ivanhoe Mines. 2023. Ivanhoe Mines Reports Mineral Resources for Makoko and Kiala Discoveries in the Western Foreland[EB/OL]. 2024-05-30. https: //www. ivanhoemines. com/news-stories/news-release/ivanhoe-mines-reports-mineral-resources-for-makoko-and-kiala-discoveries-in-the-western-foreland.
参考文献
Kampunzu A, Cailteux J, Moine B, Loris H. 2005. Geochemical characterisation, provenance, source and depositional environment of 'Roches Argilo-Talqueuses' (RAT) and mines subgroups sedimentary rocks in the Neoproterozoic Katangan Belt (Congo): Lithostratigraphic implications[J]. Journal of African Earth Sciences, 42(1): 119-133.
参考文献
Kampunzu A, Cailteux J, Kamona A, Intiomale M, Melcher F. 2009. Sediment-hosted Zn–Pb–Cu deposits in the Central African Copperbelt[J]. Ore Geology Reviews, 35(3/4): 263-297.
参考文献
Master S, Wendorff M. 2011. Neoproterozoic glaciogenic diamictites of the Katanga Supergroup, Central Africa[C]// The Geological Record of Neoproterozoic Glaciations. London: Geological Society, Memoirs, 36(1): 173-184.
参考文献
Mfula C. 2024. Zambia's copper May rise to 1mt by 2026[J]. Australia's Paydirt, 1(326): 66.
参考文献
Muchez P, André-Mayer A S, El Desouky H A, Reisberg L. 2015. Diagenetic origin of the stratiform Cu-Co deposit at Kamoto in the Central African Copperbelt[J]. Mineralium Deposita, 50(4): 437-447.
参考文献
Porada H, Berhorst V. 2000. Towards a new understanding of the Neoproterozoic-Early Palaeozoic Lufilian and northern Zambezi Belts in Zambia and the Democratic Republic of Congo[J]. Journal of African Earth Sciences, 30(3): 727-771.
参考文献
Schmandt D, Broughton D, Hitzman M, Plink-Bjorklund P, Edwards D, Humphrey J. 2013. The Kamoa copper deposit, Democratic Republic of Congo: Stratigraphy, diagenetic and hydrothermal alteration, and mineralization[J]. Economic Geology, 108(6): 1301-1324.
参考文献
Schneider J, Melcher F, Brauns M. 2007. Concordant ages for the giant Kipushi base metal deposit (DR Congo) from direct Rb-Sr and Re-Os dating of sulfides[J]. Mineralium Deposita, 42(7): 791-797.
参考文献
Selley D, Broughton D, Scott R, Hitzman M, Bull S, Large R, McGoldrick P, Croaker M, Pollington N, Barra F. 2005. A new look at the geology of the Zambian Copperbelt[J]. Economic Geology, 100: 965-1000.
参考文献
Simusokwe M. 2021. Lithology, alteration and mineralization of the Fishtie Cu-Co deposit, Zambian Copperbelt[D]. Akita-ken: Akita University.
参考文献
Su H M, Jiang S Y, Chi G X, Sheng T, Yin Y L, Liu T. 2024. Formation of the giant Luiswishi Cu-Co deposit in the Central African Copperbelt by Neoproterozoic syn-sedimentary-diagenetic processes overprinted by Pan-African orogenic mineralization events[J]. Precambrian Research, 402(4): 107-299.
参考文献
Turner E, Broughton D, Brooks T. 2018. Neoproterozoic carbonate lithofacies and ore distribution at the Kipushi Cu-Zn deposit, Democratic Republic of Congo, and Gayna River Zn camp, northwest territories, Canada[J]. Economic Geology, 113(3): 779-788.
参考文献
Turner E, Dabros Q, Broughton D, Kontak D. 2023. Textural and geochemical evidence for two-stage mineralisation at the Kamoa-Kakula Cu deposits, Central African Copperbelt[J]. Miner Deposita, 58(1): 825-832.
参考文献
Twite F, Broughton D, Nex P, Kinnaird J, Gilchrist G, Edwards D. 2018. Lithostratigraphic and structural controls on sulphide mineralisation at the Kamoa copper deposit, Democratic Republic of Congo[J]. Journal of African Earth Sciences, 151(13): 212-224.
参考文献
Wendorff M. 2005. Sedimentary genesis and lithostratigraphy of Neoproterozoic megabreccia from Mufulira, Copperbelt of Zambia[J]. Journal of African Earth Sciences, 42(1): 61-81.
参考文献
Wendorff M, Key R. 2009. The relevance of the sedimentary history of the Grand Conglomerat Formation (Central Africa) to the interpretation of the climate during a major Cryogenian glacial event[J]. Precambrian Research, 172(1): 127-142.
参考文献
Wilderode J, Heijlen W, Muynck D, Schneider J, Vanhaecke F, Muchez P. 2013. The Kipushi Cu-Zn deposit (DR Congo) and its host rocks: A petrographical, stable isotope (O, C) and radiogenic isotope (Sr, Nd) study[J]. Journal of African Earth Sciences, 79(1): 143-156.
参考文献
陈兴海, 刘运纪, 杨焱, 王纪昆, 贺云, 李天奇. 2012. 刚果(金)SICOMINES铜钴矿床地质特征及成因探讨[J]. 有色金属: 矿山部分, 64(6): 31-37.
参考文献
古阿雷, 王杰, 任军平, 左立波, 孙宏伟, 邢仕, 刘子江, Ezekiah C. 2020. 赞比亚中部泛非期Hook岩基地质特征及成矿潜力分析[J]. 地质调查与研究, 43(1): 63-71.
参考文献
李庆哲, 刘大文, 王京彬, 和志军. 2023. 中非铜钴成矿带地质特征及铜钴矿床资源量分析[J]. 地质与勘探, 59(2): 451-464.
参考文献
刘高杰, 王纪昆, 李松彬. 2021. 刚果(金)Dipeta铜钴矿床地质特征与找矿方向[J]. 矿产与地质, 35(1): 9-14.
参考文献
刘钧沅, 党伟民, 赵振华, 包久荣, 尹国庆, 杨远东, 刘高杰, 王建青, 洪文武, 李松彬, 柳海华, 董帅. 2023. 综合物探方法在中非加丹加铜钴矿带上的勘查效果分析[J]. 矿产勘查, 14(7): 1096-1105.
参考文献
卢宜冠, 涂家润, 孙凯, 覃鹏, 王华青, 何胜飞, 张航, 龚鹏辉, 郭硕, 方科, 和文言. 2021. 中非赞比亚成矿带谦比希铜钴矿床钴的赋存状态与成矿规律[J]. 地学前缘, 28(3): 338-354.
参考文献
孙宏伟, 王杰, 任军平, 唐文龙, 刘晓阳, 左立波, 古阿雷, 邢仕, 刘子江. 2019. 中非加丹加—赞比亚多金属成矿带成矿演化及找矿潜力分析[J]. 地质科技情报, 38(1): 121-131.
参考文献
唐菊兴, 王勤. 2019. 西藏铜矿资源优势及开发利用展望[J]. 中国工程科学, 21(1): 140-147.
参考文献
王幻, 曾瑞垠, 何海洋, 王新雨, 张志超, 闫鹏程, 郭建栋, 范姣. 2023. 中非铜(钴)成矿带构造地质特征及其控矿作用研究[J]. 矿产勘查, 14(11): 2125-2134.
参考文献
肖波, 覃鹏. 2019. 中部非洲卢富里安矿带中Kipushi锌-(铜)-铅矿地质特征[J]. 矿产与地质, 33(4): 623-627.
参考文献
曾瑞垠, 谭康雨, 黄建业, 张毅, 陈德稳, 詹勇, 董少波. 2021. 中非铜矿带多层位成矿特征及成因[J]. 矿产勘查, 12(1): 68-77.
参考文献
张楠. 2023 . 新能源产业发展背景下我国铜资源供需现状与趋势[J]. 中国矿业, 32(6): 2-9.
目录contents

    摘要

    中非铜矿带是世界上最重要的以沉积岩为容矿岩石的铜钴多金属成矿区,本文通过对中非铜矿带恩古巴群典型铜多金属矿床的地质特征、地球化学特征、成矿作用和矿床规模、矿石品位等几个方面进行对比分析,获得以下认识:(1)恩古巴群存在多个具有重要经济价值的铜(锌铅银)多金属矿床,以Kamoa-Kakula、 Fishtie、Lonshi和Kipushi等为典型代表,这些矿床规模大、品位高,表明恩古巴群也是本区重要的含矿层位之一;(2)恩古巴群典型矿床多位于同沉积断层附近,新元古代加丹加盆地中温、高盐度的氧化性含矿流体通过底辟作用在恩古巴群底部沉积形成层状矿体;(3)恩古巴群地层在中非铜矿带分布广泛,前陆盆地、穹隆区域外围均是良好的找矿地段,具有巨大的资源潜力和找矿前景。

    Abstract

    The Central African Copperbelt is the most important sedimentary-hosted Cu polymetallic metallogenic area in the world. This paper makes a comparative analysis on the geological characteristics, geochemical characteristics, mineralization, deposit scale and ore grade of typical deposits in the Central African Copperbelt.The main results of this research can be summarized as follows:(1) multiple economically significant Cu (Zn-Pb-Ag) deposits have been discovered in the Nguba Group, with Kamoa-Kakula, Fishtie, Lonshi, and Kipushi as typical representatives. The large scale and high grade of these deposits indicate that Nguba Group is also one of the important ore-bearing horizons in the Central African Copperbelt. (2) The typical deposits of the Nguba Group are mostly located near the synsedimentary faults. The oxidizing ore-bearing fluid with medium temperature and high salinity in Neoproterozoic Katanga Basin deposited the bedded ore bodies at the bottom of the Nguba Group through diapirism;(3) The Nguba Group are widely distributed in the Central African Copperbelt. Foreland basin and the periphery of dome region are good prospecting areas,and it has huge resource potential and prospecting prospect.

  • 0 引言

  • 铜是重要的战略性矿产资源,在电力电气、新能源产业、交通运输、电子通讯等领域应用广泛,是国民经济和社会发展的重要物质基础(唐菊兴和王勤,2019)。中国是全球第一大铜消费国,铜对外依存度在80%左右,资源安全形势严峻(张楠,2023)。中非铜矿带是世界上资源量最大、平均品位最高的以沉积岩为容矿岩石的铜钴多金属成矿区(Cox et al.,2007Gao et al.,2024Su et al.,2024),带内分布有几十处大型—超大型铜(钴)矿床(王幻等, 2023),含铜约 2.6 亿 t、钴 1400 万 t,还含有大量的锌、镍和铀矿床,具有规模大、品位高、矿层厚、埋藏浅、易开采的特点,经济价值巨大。2023 年,刚果 (金)产铜 284.2 万 t、钴 13.98 万 t(Ministere Des Mines of Republique Democratique Du Congo, 2024),是全球第二大铜生产国和第一大钴生产国,同期赞比亚铜产量为 69.8 万t(Mfula,2024),中非铜矿带已成为中国重要的海外铜资源供应基地。

  • 根据中非铜矿带所属的地理位置,将其分为加丹加成矿带和赞比亚成矿带(Wendorff,2005Su et al.,2024)。以往认为,罗安群矿山亚群是本区最重要的赋矿层位,其他层位中的矿体规模小、经济意义不显著。近年来,在恩古巴群底部实现了找矿重大发现,矿带的北西端和南东端发现有 Kamoa-Kakula、Makoko-Kiala、Lonshi、Fishtie 等超大型—大型铜矿床,具有重要的经济意义,同时为成矿理论研究和找矿勘查提供了新思路、新方向。目前该层位找矿关注度越来越高,然而对恩古巴群成矿特征、成矿机理尚无系统总结,因此,本文开展了恩古巴群典型矿床地质地球化学特征、成矿作用和矿床规模、矿石品位等方面的分析研究,以期为区内进一步找矿勘查提供有益借鉴。

  • 1 区域地质背景

  • 卢菲利弧型构造带位于刚果(金)与赞比亚交界处,整体延伸近 700 km、宽度约 150 km(孙宏伟等,2019),它控制着中非铜矿带的分布,是新元古代泛非运动(600~500 Ma)在该地区的响应(Porada and Berhorst,2000)。卢菲利弧分为外部褶皱推覆带、穹隆区域、复向斜带、加丹加高地和前陆盆地 (Selley et al.,2005)。加丹加成矿带位于卢菲利弧型构造带北部,主体属于外部褶皱推覆带(图1),在该地区,一系列的褶皱和走滑断层近平行密集分布,构成十分典型的褶皱-逆冲构造格局。赞比亚成矿带主要位于南部和南东部的穹隆区域。

  • 铜钴矿体主要产于新元古代加丹加超群沉积岩中(图2),多年来,众多学者在本区开展的同位素地质年代学结果表明,矿床形成时代介于 820~490 Ma,以560~490 Ma最为集中(Binda and Eden,1972; Barron,2003Wendorff and Key,2009;Master and Wendorff,2011;卢宜冠等,2021)。加丹加超群为一套巨厚的滨—浅海相浅水富镁碳酸盐岩-碎屑岩沉积,是新元古代加丹加克拉通盆地演化的产物,在不同的区域地层厚度变化大,总体为 5~10 km (Batumike et al.,2007Bull et al.,2011)。依据区域上广泛发育的两层混杂陆源碎屑岩(冰碛岩)将加丹加超群自下而上划分为罗安群(R)、恩古巴群 (Ng)和孔德龙群(Ku)3个岩石地层单元(Cailteux et al.,2005)。罗安群由滨浅海碎屑沉积岩(砾岩、砂岩)和深水富镁碳酸盐岩(主要为白云岩、叠层石白云岩、白云质页岩等)组成(Kampunzu et al.,2005);恩古巴群主要由碳酸盐岩和碳酸盐质碎屑岩(白云岩、灰岩、白云质页岩、粉砂岩等)组成,为一砾岩-砂岩-粉砂岩-页岩-碳酸盐岩组合(刘钧沅等, 2023),其底部的巨型角砾岩层“大砾岩”(Grand Conglomerat)为一典型冰川沉积层,是全球性 Sturtian-Raitan 冰期的产物(Master and Wendorff, 2011);孔德龙群以陆源碎屑岩沉积为主,主要由碳酸盐岩、杂砂岩、砂岩、页岩组成,其底部为冰川沉积混杂砾岩层“小砾岩”(Petit Conglomerat),可能与 Marinoan冰川作用有关(Hoffmann et al.,2004)。这些沉积岩在泛非运动期间发生了不同程度的变质变形,但在赞比亚西北部保留了其沉积构造。

  • 图1 中非铜矿带区域地质矿产简图(据Schmandt et al.,2013修改)

  • 卢非利弧内岩浆活动弱,被加丹加超群沉积岩不整合覆盖的赞比亚 Nchanga 花岗岩锆石 SHRIMP U-Pb 年龄为(883±10)Ma,代表了最晚期的加丹加岩浆活动(Armstrong et al.,2005)。镁铁质侵入岩 (765~735 Ma)和少量熔岩、凝灰岩主要发育在罗安群上部的迪佩特亚群沉积岩中(Cailteux et al., 2007)。Hook花岗岩(566~519 Ma)是本区已知最年轻的侵入岩,代表了造山后向后造山伸展转换的构造环境(古阿雷等,2020)。

  • 中非铜矿带内已发现有约 200 个铜(钴)矿床 (点),经初步统计,铜金属量超 200万 t的矿床有 24个(表1)。其中,加丹加矿带的铜资源量超1.5亿t,主要包括Kamoa-Kakula、Kolwezi(Kamoto、Sicomines 和 Kolwezi 等)和 Tenke-Fungurume 共 3 个超大型矿集区(李庆哲等,2023)。赞比亚矿带的铜资源量约为 1 亿 t(Hitzman et al.,2005),包括 Konkola-Musoshi、 Nchanga-Chingola、 Nkana-Mindola、 Mufulira、Chambishi 等矿床。尽管成矿带内不同的地区和矿床之间存在着差异,但它们都是同一个演化体系的产物(Hitzman et al.,2005)。

  • 中非铜矿带以往发现的矿床主要赋存于罗安群下部的层位中(图2)。2003 年以来,艾芬豪矿业公司经过十多年的地质、地球物理、地球化学综合勘查工作,在铜矿带北西端Kolwezi矿集区的外侧发现了产于恩古巴群底部层位的Kamoa-Kakula矿床,铜金属量超4300万t,是非洲第一大、全球第四大铜矿床,被誉为近百年来非洲大陆最著名的铜矿发现 (Ivanhoe Mines,2016)。2023 年 11 月,艾芬豪公司宣布在 Kamoa-Kakula 矿床的西侧、北侧发现了 Makoko和Kiala矿床,铜金属量495.9万t,再次取得了新的找矿突破(Ivanhoe Mines,2023)。此外,在刚果(金)和赞比亚交界处的 Lonshi、Fishtie、Kipushi 等矿床均显示赋存于恩古巴群地层中,各典型矿床的地质特征分别介绍如下。

  • 图2 中非铜矿带含矿层位对比柱状图(据Hitzman et al.,2012修改)

  • 2 典型矿床地质特征

  • 2.1 Kamoa-Kakula铜矿床

  • Kamoa-Kakula 铜矿床位于科卢韦齐矿集区以西约25 km处(图1),铜矿体呈层状产于恩古巴群底部的大砾岩组中(图2,图3),其底部的砾岩(混积岩)与下部薄层状含黄铁矿粉砂岩、杂砂岩是最主要的赋矿岩石(Twite et al.,2018)。矿体产状随地层产状的变化而变化,受一系列褶皱和断裂构造控制,控制最大延深超 1500 m。矿化富集区域可能与沉积期间活跃的生长断层有关,其特征是地层厚度的突然变化和陡峭的层理(Gilchrist,2019),这种现象在赞比亚的 Chambishi、Konkola 和 Fishtie 均能见到(Selley et al.,2005Hendrickson et al.,2015)。矿石呈他形粒状、半自形粒状、交代结构等,层状、浸染状、角砾状、细脉状、条带状构造,主要矿石矿物为黄铜矿、辉铜矿、斑铜矿和少量硫铜钴矿、方铅矿、赤铜矿、孔雀石等(曾瑞垠等,2021)。硫化物主要以细粒浸染状的形式分布(Turner et al.,2023),矿物垂向分带明显,底部以辉铜矿为主,向上过渡为斑铜矿、黄铜矿、黄铁矿,水平方向分带不明显。围岩蚀变以钾化、硅化、绿泥石化为主,绿泥石化发生的较晚且最为广泛(Schmandt et al.,2013)。与加丹加地区其他矿床相比,本矿床Co含量很少。

  • Kamoa-Kakula铜矿床是通过传统的地质、物化探测量和钻探验证发现的(Broughton and Rogers, 2010)。2003—2004 年,艾芬豪公司在 2×104 km2 的矿权区内采用遥感解译、航磁航放测量和水系沉积物地球化学测量了解地质情况、圈定大量找矿靶区,其中 Kamoa 靶区铜含量最高值达 3679×10-6。 2005—2006 年,在靶区内通过地质测量、土壤地球化学测量、大功率电法测量及空气反循环钻探发现了 Kamoa铜矿床,土壤地球化学测量铜、钼、铋元素含量高值区与低磁异常叠合区域是找矿有利部位 (土壤样品铜含量最高值为 509×10-6)。Kamoa矿床的硫同位素数据表明(Schmandt et al.,2013),岩石中大部分还原硫形成于海水细菌硫酸盐还原(BSR) 的早期,并在铜成矿过程中再循环。蒸发硬石膏和海水硫酸盐热化学还原产生的少量还原硫被固定在Mwashya亚群和火山岩的硫化物中。与中非铜矿带的大多数其他矿床不同,Kamoa 矿床缺乏多期成矿的特征。以 Cu 边界品位 1% 圈定矿体,Kamoa 矿段控制、推断资源量的矿化范围分别为 55.2 km2、 21.7 km2,铜金属量2481万t、平均品位2.49%,矿体厚度 2.3~21.6 m,浅部有少量氧化矿石;Kakula 矿段探明、控制、推断资源量矿化范围分别为2.2 km2、 21.7 km2和 5.5 km2,铜金属量 1831 万 t、平均品位 2.60%,矿体厚度 2.9~42.5 m,均为硫化矿石 (Peters et al.,2020)。矿山2021年建成投产、服务年限 42 年,2023 年产铜 39.4 万 t,三期采选工程已于2024年5月提前投产,矿产铜年产能将提升至60 万 t 以上,预计将成为全球第三大及非洲最大的铜矿山。

  • 表1 中非铜矿带主要矿床规模、品位特征一览

  • 注:DRC—刚果(金),ZM—赞比亚;数据来源据陈兴海等,2012;Zientek et al.,2014;Gray et al.,2015;Peters et al.,2020,2022

  • 图3 Kamoa矿段中部典型剖面图(据Schmandt et al.,2013修改)

  • 2.2 Lonshi铜矿床

  • Lonshi 铜矿床位于刚果(金)南部,距赞比亚边境约3 km,处在Kafue背斜北东翼(图1),分为东西2 个矿段,中间被北西走向的 Lonshi断层隔开。矿体呈层状、似层状赋存在恩古巴群底部白云岩和砾岩中,矿体倾角由浅至深具有缓-陡-缓的特点。矿石结构主要为半自形—他形粒状结构、交代结构等,构造为浸染状、纹层状、脉状-网脉状,主要金属矿物为辉铜矿、斑铜矿、黄铜矿、黄铁矿、孔雀石、硅孔雀石和少量赤铜矿、自然铜。硫化物组合具有分带性,自上而下依次为辉铜矿-斑铜矿-黄铜矿-黄铁矿。Lonshi断层可能为本区的生长断层。

  • 2001 年,第一量子公司发现 Lonshi 矿床,同年开始露采氧化矿,平均入选品位Cu>5%,2006年发现了深部的硫化矿。2020 年,SRK 开展了地质建模、资源量估算,西矿段保有铜金属量约 87 万 t、平均品位 2.82%(中国瑞林工程技术股份有限公司, 2021)。2023年9月,金诚信公司恢复矿山生产,预计达产后年产电解铜4万t。

  • 2.3 Fishtie铜矿床

  • Fishtie 铜矿床位于赞比亚矿带 Kafue 背斜南东端 Lusale 盆地的北缘,距刚果(金)边境约 5 km,是中非铜矿带最东部的矿床(Hnatyshin et al.,2022)。 2004 年,第一量子公司通过土壤地球化学测量、磁法测量和钻探工作发现该矿床(Simusokwe,2021)。矿体产在恩古巴群底部的大砾岩组混积岩、粉砂岩和上覆的白云岩、白云质粉砂岩中(图4)。高角度正断层控制了大砾岩组的厚度,表明其存在同沉积构造运动。矿石矿物主要为黄铁矿、磁黄铁矿、黄铜矿、少量斑铜矿和微量硫铜钴矿,近地表氧化矿物主要为孔雀石。早期黄铁矿主要呈细粒状、草莓状分布在混积岩中,晚期黄铁矿呈粗粒状、面状分布在黄铜矿边缘。黄铜矿是主要的含铜硫化物,常与白云母、绿泥石共生,白云质粉砂岩中铜硫化物最丰富。铜矿化集中在 2 条高角度正断层及其附近,南部的正断层控制了早期磁铁矿-铁白云石-石英的矿化部位,北部的正断层可能是热液流体的主要通道。宏观上,本区铜矿化特征与 Kamoa 类似,但与 Kamoa 垂向分带不同的是,Fishtie 矿区的蚀变矿化显示出相对于正断层的横向分带,斑铜矿主要分布在正断层附近,成矿期黄铁矿与黄铜矿主要见于外围区域(Hendrickson et al.,2015)。脉状辉钴矿化的 Re-Os模式年龄为 492±3 Ma,是矿带内最年轻的矿化年龄之一(Hnatyshin et al.,2022)。

  • 图4 Fishtie铜矿床典型剖面图(据Hendrickson et al.,2015修改)

  • 以 Cu 边界品位 0.5% 圈定矿体,矿床铜金属量 57.2万 t、平均品位 1. 04%。2023年底,第一量子公司与 Mimosa 公司合作,计划从 2026 年开始采矿作业,规划铜产能3万t/a。

  • 2.4 Kipushi锌铜多金属矿床

  • Kipushi 锌铜多金属矿床位于卢本巴希南西方向约30 km处近赞比亚边境(图1),是中非铜矿带内最重要的以 Zn-Cu(Pb-Ag)为主的多金属矿床。矿体垂向上呈管状、烟囱状,平面上呈不规则状,沿北北东走向的 Kipushi 断层延伸(图5),高品位块状、稠密浸染状矿石主要赋存在恩古巴群下部 Kakontwe 组礁相碳酸盐岩地层中(Turner et al., 2018)。金属矿物主要为闪锌矿、黄铜矿、黄铁矿、斑铜矿、辉铜矿和少量方铅矿、砷黝铜矿、毒砂等,矿石构造呈块状、稠密浸染状—浸染状、脉状。硫化物分带性明显,自Kipushi断层接触带向外至碳酸盐岩中依次为富铜硫化物带、富锌硫化物带、富锌和富黄铁矿硫化物带。深部的“大锌矿体”位于 Kipushi断层下盘的碳酸盐岩中,主要由块状矿石组成,矿物成分简单,主要为闪锌矿、黄铁矿和少量浸染状方铅矿、黄铜矿、斑铜矿(Kampunzu et al., 2009)。围岩蚀变见白云石化、硅化和绿泥石化。

  • 图5 Kipushi矿床典型剖面图(据Peters et al.,2022 修改)

  • Kipushi 矿床发现于 1922 年,1922—1993 年共采出矿石约 6000 万 t,含锌 662 万 t(平均品位 11. 03%)、铜 408万t(平均品位 6.8%)(Kampunzu et al.,2009),1956—1978 年还生产了 1.3 万 t 铅和 278 t 锗,开采深度自地表向下约 1150 m,目前控制的最大矿化深度约 1800 m(肖波和覃鹏,2019)。根据艾芬豪公司2022年发布的可研报告,以锌边界品位 7% 或铜边界品位 1.5%(据矿体主元素选择相应的边界品位)圈定矿体,保有资源量:锌 466 万 t、平均品位 29.8%;铜 21.8 万 t、平均品位 1.39%;铅 12.8万t、平均品位0.82%;银341 t、平均品位21.8× 10-6。预计将于 2024 年重启生产,选厂产能 80 万 t/ 年,前五年生产期锌平均品位为36.4%。

  • 3 不同赋矿层位典型矿床特征对比

  • 在刚果(金)和赞比亚,铜钴多金属矿化主要产于加丹加超群下部的罗安群地层中,在刚果(金)主要以碳酸盐岩(白云岩)为容矿围岩,在赞比亚则以硅质碎屑岩(页岩)为主(表1,图2)。矿体常被限定在一定的层位内,以层状、似层状为主,部分呈脉状、透镜体状。在加丹加地区,罗安群下部的矿山亚群是最重要的赋矿层位,通常具有上、下 2 层矿体,总厚度多为20~25 m,上部矿体赋存于白云质页岩和白云岩中,下部矿体赋存于硅化叠层石白云岩、细粒白云岩和白云质粉砂岩中,2条矿体之间被低品位的蜂窝状硅化白云岩层隔开(刘高杰等, 2021)。在赞比亚,铜矿化主要产在相当于矿山亚群的下罗安亚群含矿页岩中,容矿岩石主要为白云质粉砂岩、泥岩(页岩)、砂岩夹炭质页岩、泥质粉砂岩和层状白云岩,矿体厚度多为7~15 m,Nchanga矿区上部矿体最大厚度达 91 m(Selley et al.,2005)。加丹加矿带的矿床平均 Co∶Cu比值约 1∶13,最高可达 1∶2(Kisanfu 矿区);赞比亚矿带的矿床具有较低的Co∶Cu比值,平均约1∶50(Cailteux et al.,2005)。

  • 随着 Kamoa-Kakula 世界级超大型铜矿床的发现,目前逐渐认识到恩古巴群也是本区重要的含矿层位之一,产在恩古巴群底部大砾岩组以Cu为主成矿元素的代表性矿床为 Kamoa-Kakula、Makoko-Kiala、Deziwa、Lonshi 和 Fishtie 等,产在恩古巴群中部 Kakontwe组以 Zn、Cu(Pb、Ag)为主成矿元素的代表性矿床为 Kipushi。不同赋矿层位的典型矿床在区域构造位置、矿床地质地球化学特征、矿石特征、成矿作用等方面既有相似性又有一定的区别,其主要特征见表2。

  • 表2 中非铜矿带不同赋矿层位的典型矿床特征对比

  • 恩古巴群典型矿床多位于同生断层附近,铜多金属矿化赋存在氧化-还原边界上,矿体总体稳定,一般未遭受明显的后期构造破坏,但局部受到同生断层及后期构造叠加。新元古代时期,加丹加盆地深部卤水萃取盆地底部、下部红层或基底和火山岩的中的金属元素形成中温、高盐度的氧化性含矿流体,通过底辟作用沿高角度正断层向上迁移,在恩古巴群底部与碎屑岩中富有机质的沉积物和还原性流体发生热化学还原反应造成大量成矿物质沉淀、富集形成层状矿体,同时在围岩中形成较为普遍的绿泥石化、钾化、硅化、白云石化、绢云母化等热液蚀变(Twite et al.,2018孙宏伟等,2019曾瑞垠等,2021Turner et al.,2023)。铜(铅锌)金属硫化物中的硫主要来自于成岩期的细粒黄铁矿,金属元素可能来自含铜矿化斑岩体、下部红层、盆地内部古老地体及镁铁质岩浆岩。卢菲利造山运动晚期或造山期后中高温、中低—高盐度流体形成的含矿细脉切割早期形成的层状矿体,表明矿床形成经历了长时间、多期次的成矿过程。

  • 目前,中非铜矿带的恩古巴群地层中发现有多个超大型 — 大型矿床,其中,北西端有 Kamoa-Kakula、Makoko-Kiala和Deziwa超大型铜(钴)矿床,中部有Kipushi超大型锌铜(铅银)多金属矿床,南东端有Lonshi、Fishtie大型铜矿床,自北西向南东具有良好的 Cu(Zn-Pb-Ag)多金属矿化,矿床规模大、矿石品位高。恩古巴群在中非铜矿带内出露范围远大于罗安群,在卢菲利前陆盆地内分布尤为广泛。以往的勘查工作主要集中在罗安群分布区域,对恩古巴群地层含矿的重要性尚未完全认识,具有巨大的资源潜力和找矿前景。

  • 4 结论

  • (1)中非铜矿带是世界上资源量最大、品位最高的以沉积岩为容矿岩石的铜钴多金属成矿区,铜钴矿化主要产在罗安群下部的沉积岩中,已发现有多个大型—超大型矿床,带内含铜约 2.6 亿 t、钴 1400万 t,是全球第三大铜产地和第一大钴产地,经济价值巨大。

  • (2)Kamoa-Kakula、Kipushi、Deziwa 和 Lonshi、 Fishtie 矿床分别位于中非铜矿带北西端、中部和南东端,矿体均赋存在恩古巴群地层中,其中 Kamoa-Kakula、Deziwa、Fishtie和Lonshi矿床以Cu为主成矿元素,Kipushi矿床以Zn-Cu(Pb-Ag)为主成矿元素,这些矿床规模大、矿石品位高,表明恩古巴群也是本区重要的含矿层位之一。

  • (3)恩古巴群在区域上分布广泛,具有巨大的资源潜力和找矿前景。目前该层位找矿关注度越来越高,通过进一步勘查,有望取得新的找矿重大发现。前陆盆地、穹隆区域外围均是良好的找矿区域。

  • (4)罗安群和恩古巴群不同赋矿层位的矿床在容矿岩石、成矿元素等方面具有明显的区别,造成此种差异的原因尚不清楚。此外,卢菲利弧外侧的前陆盆地覆盖广泛、交通条件差,如何选用有效的勘查方法手段以快速实现找矿突破,是目前需要重点研究的内容。

  • 致谢 感谢《矿产勘查》编辑部的约稿和审稿专家的建设性意见。天津华北地质勘查总院在中非铜矿带开展勘查工作二十余年,提交了多个大型 —超大型矿床,本文是团队取得的部分研究成果的梳理和总结。工作过程中,得到了天津华北地质勘查局原总工程师段焕春博士、原副总工程师肖成东博士和诸多专家领导的热情指导与大力支持,在此一并表示诚挚的感谢!

  • 注释

  • ① Cox D, Lindsey D, Singer D, Moring B, Diggles M.2007. Sediment-hosted Copper Deposits of the World: Deposit Models and Database[R]. Reston: U. S. Geological Survey.

  • ② Ministere Des Mines of Republique Democratique Du Congo.2024. Statistiques Minieres Parcielles et Provisoires Pour l’ Exercice2023[R].

  • ③ Zientek M, Bliss J, Broughton D, Christie M, Denning P, Hayes T, Hitzman M, Horton J, Frost-Killian S, Jack D, Master S, Parks H, Taylor C, Wilson A, Wintzer N, Woodhead J.2014. Sediment-Hosted Stratabound Copper Assessment of the Neoproterozoic Roan Group, Central African Copperbelt, Katanga Basin, Democratic Republic of the Congo and Zambia [R]. Reston: U. S. Geological Survey.

  • ④ Gray D, Lawlor M, Stone R.2015. Kansanshi Operations North West Province, Zambia[R]. Toronto: First Quantum Minerals Pty Ltd.

  • ⑤ Peters B, Seibel G, Joughin W, Treen J, Phillips M, Ruiter G.2020. Kamoa-Kakula2020 Resource Update [R]. Vancouver: Ivanhoe Mines Limited.

  • ⑥ Peters B, Robertson M, Witley J, Joughin W, Edwards J.2022. Kipushi Project Kipushi2022 Feasibility Study[R]. Vancouver: Ivanhoe Mines Limited.

  • ⑦ 中国瑞林工程技术股份有限公司.2021. 刚果(金)Lonshi铜矿项目可行性研究报告[R].

  • 参考文献

    • Armstrong R, Master S, Robb L. 2005. Geochronology of the Nchanga Granite, and constraints on the maximum age of the Katanga Supergroup, Zambian Copperbelt[J]. Journal of African Earth Science, 42(1): 41-60.

    • Barron J. 2003. The Stratigraphy, Metamorphism, and Tectonic History of the Solwezi Area, Northwest Province, Zambia: Integrating Geological Field Observations and Airborne Geophysics in the Interpretation of Regional Geology[D]. Colorado: Colorado School of Mines.

    • Batumike M, Cailteux J, Kampunzu A. 2007. Lithostratigraphy, basin development, base metal deposits, and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, central African Copperbelt[J]. Gondwana Research, 11(3): 432-447.

    • Binda P, Eden J. 1972. Sedimentological evidence on the origin of the Precambrian Great Conglomerate (Kundelungu Tillite), Zambia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 12(3): 151-168.

    • Broughton D, Rogers T. 2010. Discovery of the Kamoa copper deposit, Central African Copperbelt, D. R. C. [C]// Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries. Special Publications of the Society of Economic Geologists, 15(1): 287-298.

    • Bull S, Selley D, Broughton D, Hitzman M, Cailteux J, Large R, McGoldrick P. 2011. Sequence and carbon isotopic stratigraphy of the Neoproterozoic Roan Group strata of the Zambian copperbelt[J]. Precambrian Research, 190(1/4): 70-89.

    • Cailteux J, Kampunzu A, Lerouge C, Kaputo A, Milesi J. 2005. Genesis of sediment-hosted stratiform copper-cobalt deposits, Central African Copperbelt[J]. Journal of African Earth Sciences, 42(1): 134-158.

    • Cailteux J, Kampunzu A, Lerouge C. 2007. The Neoproterozoic Mwashya-Kansuki sedimentary rock succession in the central African Copperbelt, its Cu-Co mineralisation, and regional correlations[J]. Gondwana Research, 11(3): 414-431.

    • Decrée S, Deloule E, Putter T, Dewaele S, Mees F, Yans J, Marignac C. 2011. SIMS U-Pb dating of uranium mineralization in the Katanga Copperbelt: Constraints for the geodynamic context[J]. Ore Geology Reviews, 40(1): 81-89.

    • Desouky H, Muchez P, Boyce A, Schneider J, Cailteux J, Dewaele S, Quadt A. 2010. Genesis of sediment-hosted stratiform copper-cobalt mineralization at Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo)[J]. Mineralium Deposita, 45(8): 735-763.

    • Desouky H, Muchez P, Cailteux J. 2009. Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo[J]. Ore Geology Reviews, 36(4): 315-332.

    • Gao B, Xie H, Ren J, Zhang Z, Ma H. 2024. Biomarker signatures and depositional environment of ore-bearing black shale in the Luishia Cu-Co deposit, Democratic Republic of Congo: Implications for regional copper mineralization[J]. Journal of African Earth Sciences, 213(1): 105-242.

    • Gilchrist G. 2019. Evolving estimation techniques for an evolving world class stratiform copper deposit at Kamoa-Kakula, Democratic Republic of the Congo[J]. In Mining goes Digital, 192-200.

    • Heijlen W, Banks D, Muchez P, Stensgard B, Yardley B. 2008. The Nature of mineralizing fluids of the Kipushi Zn-Cu deposit, Katanga, Democratic Repubic of Congo: Quantitative fluid inclusion analysis using Laser Ablation ICP-MS and bulk Crush-Leach methods[J]. Economic Geology, 103(7): 1459-1482.

    • Hendrickson M, Hitzman M, Wood D, Humphrey J, Wendlandt R. 2015. Geology of the Fishtie deposit, Central Province, Zambia: Iron oxide and copper mineralization in Nguba Group metasedimentary rocks[J]. Mineralium Deposita, 50(6): 717-737.

    • Hitzman M, Broughton D, Selley D, Woodhead J, Wood D, Bull S. 2012. The Central African Copperbelt: Diverse stratigraphic, structural, and temporal settings the world’s largest sedimentary copper district[C]// Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe. Society of Economic Geologists, 16: 487-514.

    • Hitzman M, Kirkham R, Broughton D, Thorson J, Selley D. 2005. The sediment-hosted stratiform copper ore system[C]// Economic Geology 100th Anniversary Volume. Society of Economic Geologists, 609-642.

    • Hnatyshin D, Tsuruoka S, Hitzman M, Creaser R. 2022. Cobalt mineralization age for the fishtie Cu-Co deposit in Zambia[C]// Goldschmidt 2022 Abstract, Honolulu.

    • Hoffmann K, Condon D, Bowring S, Crowley J. 2004. U-Pb zircon dates for the Neoproterozoic Ghaub Formation, Namibia: constraints on Marinoan glaciation[J]. Geology, 32(9): 817-820.

    • Ivanhoe Mines. 2016. Kamoa-Kakula Project now demonstrated to be the largest copper discovery ever made on the African continent[EB/OL]. 2024-05-30. https: //www. ivanhoemines. com/news-stories/news-release/kamoa-kakula-project-now-demonstrated-to-be- the-largest-copper-discovery-ever-made-on-the-african-continent.

    • Ivanhoe Mines. 2023. Ivanhoe Mines Reports Mineral Resources for Makoko and Kiala Discoveries in the Western Foreland[EB/OL]. 2024-05-30. https: //www. ivanhoemines. com/news-stories/news-release/ivanhoe-mines-reports-mineral-resources-for-makoko-and-kiala-discoveries-in-the-western-foreland.

    • Kampunzu A, Cailteux J, Moine B, Loris H. 2005. Geochemical characterisation, provenance, source and depositional environment of 'Roches Argilo-Talqueuses' (RAT) and mines subgroups sedimentary rocks in the Neoproterozoic Katangan Belt (Congo): Lithostratigraphic implications[J]. Journal of African Earth Sciences, 42(1): 119-133.

    • Kampunzu A, Cailteux J, Kamona A, Intiomale M, Melcher F. 2009. Sediment-hosted Zn–Pb–Cu deposits in the Central African Copperbelt[J]. Ore Geology Reviews, 35(3/4): 263-297.

    • Master S, Wendorff M. 2011. Neoproterozoic glaciogenic diamictites of the Katanga Supergroup, Central Africa[C]// The Geological Record of Neoproterozoic Glaciations. London: Geological Society, Memoirs, 36(1): 173-184.

    • Mfula C. 2024. Zambia's copper May rise to 1mt by 2026[J]. Australia's Paydirt, 1(326): 66.

    • Muchez P, André-Mayer A S, El Desouky H A, Reisberg L. 2015. Diagenetic origin of the stratiform Cu-Co deposit at Kamoto in the Central African Copperbelt[J]. Mineralium Deposita, 50(4): 437-447.

    • Porada H, Berhorst V. 2000. Towards a new understanding of the Neoproterozoic-Early Palaeozoic Lufilian and northern Zambezi Belts in Zambia and the Democratic Republic of Congo[J]. Journal of African Earth Sciences, 30(3): 727-771.

    • Schmandt D, Broughton D, Hitzman M, Plink-Bjorklund P, Edwards D, Humphrey J. 2013. The Kamoa copper deposit, Democratic Republic of Congo: Stratigraphy, diagenetic and hydrothermal alteration, and mineralization[J]. Economic Geology, 108(6): 1301-1324.

    • Schneider J, Melcher F, Brauns M. 2007. Concordant ages for the giant Kipushi base metal deposit (DR Congo) from direct Rb-Sr and Re-Os dating of sulfides[J]. Mineralium Deposita, 42(7): 791-797.

    • Selley D, Broughton D, Scott R, Hitzman M, Bull S, Large R, McGoldrick P, Croaker M, Pollington N, Barra F. 2005. A new look at the geology of the Zambian Copperbelt[J]. Economic Geology, 100: 965-1000.

    • Simusokwe M. 2021. Lithology, alteration and mineralization of the Fishtie Cu-Co deposit, Zambian Copperbelt[D]. Akita-ken: Akita University.

    • Su H M, Jiang S Y, Chi G X, Sheng T, Yin Y L, Liu T. 2024. Formation of the giant Luiswishi Cu-Co deposit in the Central African Copperbelt by Neoproterozoic syn-sedimentary-diagenetic processes overprinted by Pan-African orogenic mineralization events[J]. Precambrian Research, 402(4): 107-299.

    • Turner E, Broughton D, Brooks T. 2018. Neoproterozoic carbonate lithofacies and ore distribution at the Kipushi Cu-Zn deposit, Democratic Republic of Congo, and Gayna River Zn camp, northwest territories, Canada[J]. Economic Geology, 113(3): 779-788.

    • Turner E, Dabros Q, Broughton D, Kontak D. 2023. Textural and geochemical evidence for two-stage mineralisation at the Kamoa-Kakula Cu deposits, Central African Copperbelt[J]. Miner Deposita, 58(1): 825-832.

    • Twite F, Broughton D, Nex P, Kinnaird J, Gilchrist G, Edwards D. 2018. Lithostratigraphic and structural controls on sulphide mineralisation at the Kamoa copper deposit, Democratic Republic of Congo[J]. Journal of African Earth Sciences, 151(13): 212-224.

    • Wendorff M. 2005. Sedimentary genesis and lithostratigraphy of Neoproterozoic megabreccia from Mufulira, Copperbelt of Zambia[J]. Journal of African Earth Sciences, 42(1): 61-81.

    • Wendorff M, Key R. 2009. The relevance of the sedimentary history of the Grand Conglomerat Formation (Central Africa) to the interpretation of the climate during a major Cryogenian glacial event[J]. Precambrian Research, 172(1): 127-142.

    • Wilderode J, Heijlen W, Muynck D, Schneider J, Vanhaecke F, Muchez P. 2013. The Kipushi Cu-Zn deposit (DR Congo) and its host rocks: A petrographical, stable isotope (O, C) and radiogenic isotope (Sr, Nd) study[J]. Journal of African Earth Sciences, 79(1): 143-156.

    • 陈兴海, 刘运纪, 杨焱, 王纪昆, 贺云, 李天奇. 2012. 刚果(金)SICOMINES铜钴矿床地质特征及成因探讨[J]. 有色金属: 矿山部分, 64(6): 31-37.

    • 古阿雷, 王杰, 任军平, 左立波, 孙宏伟, 邢仕, 刘子江, Ezekiah C. 2020. 赞比亚中部泛非期Hook岩基地质特征及成矿潜力分析[J]. 地质调查与研究, 43(1): 63-71.

    • 李庆哲, 刘大文, 王京彬, 和志军. 2023. 中非铜钴成矿带地质特征及铜钴矿床资源量分析[J]. 地质与勘探, 59(2): 451-464.

    • 刘高杰, 王纪昆, 李松彬. 2021. 刚果(金)Dipeta铜钴矿床地质特征与找矿方向[J]. 矿产与地质, 35(1): 9-14.

    • 刘钧沅, 党伟民, 赵振华, 包久荣, 尹国庆, 杨远东, 刘高杰, 王建青, 洪文武, 李松彬, 柳海华, 董帅. 2023. 综合物探方法在中非加丹加铜钴矿带上的勘查效果分析[J]. 矿产勘查, 14(7): 1096-1105.

    • 卢宜冠, 涂家润, 孙凯, 覃鹏, 王华青, 何胜飞, 张航, 龚鹏辉, 郭硕, 方科, 和文言. 2021. 中非赞比亚成矿带谦比希铜钴矿床钴的赋存状态与成矿规律[J]. 地学前缘, 28(3): 338-354.

    • 孙宏伟, 王杰, 任军平, 唐文龙, 刘晓阳, 左立波, 古阿雷, 邢仕, 刘子江. 2019. 中非加丹加—赞比亚多金属成矿带成矿演化及找矿潜力分析[J]. 地质科技情报, 38(1): 121-131.

    • 唐菊兴, 王勤. 2019. 西藏铜矿资源优势及开发利用展望[J]. 中国工程科学, 21(1): 140-147.

    • 王幻, 曾瑞垠, 何海洋, 王新雨, 张志超, 闫鹏程, 郭建栋, 范姣. 2023. 中非铜(钴)成矿带构造地质特征及其控矿作用研究[J]. 矿产勘查, 14(11): 2125-2134.

    • 肖波, 覃鹏. 2019. 中部非洲卢富里安矿带中Kipushi锌-(铜)-铅矿地质特征[J]. 矿产与地质, 33(4): 623-627.

    • 曾瑞垠, 谭康雨, 黄建业, 张毅, 陈德稳, 詹勇, 董少波. 2021. 中非铜矿带多层位成矿特征及成因[J]. 矿产勘查, 12(1): 68-77.

    • 张楠. 2023 . 新能源产业发展背景下我国铜资源供需现状与趋势[J]. 中国矿业, 32(6): 2-9.

图1 中非铜矿带区域地质矿产简图(据Schmandt et al.,2013修改)
图2 中非铜矿带含矿层位对比柱状图(据Hitzman et al.,2012修改)
图3 Kamoa矿段中部典型剖面图(据Schmandt et al.,2013修改)
图4 Fishtie铜矿床典型剖面图(据Hendrickson et al.,2015修改)
图5 Kipushi矿床典型剖面图(据Peters et al.,2022 修改)
表1 中非铜矿带主要矿床规模、品位特征一览
表2 中非铜矿带不同赋矿层位的典型矿床特征对比

相似文献

  • 参考文献

    • Armstrong R, Master S, Robb L. 2005. Geochronology of the Nchanga Granite, and constraints on the maximum age of the Katanga Supergroup, Zambian Copperbelt[J]. Journal of African Earth Science, 42(1): 41-60.

    • Barron J. 2003. The Stratigraphy, Metamorphism, and Tectonic History of the Solwezi Area, Northwest Province, Zambia: Integrating Geological Field Observations and Airborne Geophysics in the Interpretation of Regional Geology[D]. Colorado: Colorado School of Mines.

    • Batumike M, Cailteux J, Kampunzu A. 2007. Lithostratigraphy, basin development, base metal deposits, and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, central African Copperbelt[J]. Gondwana Research, 11(3): 432-447.

    • Binda P, Eden J. 1972. Sedimentological evidence on the origin of the Precambrian Great Conglomerate (Kundelungu Tillite), Zambia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 12(3): 151-168.

    • Broughton D, Rogers T. 2010. Discovery of the Kamoa copper deposit, Central African Copperbelt, D. R. C. [C]// Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries. Special Publications of the Society of Economic Geologists, 15(1): 287-298.

    • Bull S, Selley D, Broughton D, Hitzman M, Cailteux J, Large R, McGoldrick P. 2011. Sequence and carbon isotopic stratigraphy of the Neoproterozoic Roan Group strata of the Zambian copperbelt[J]. Precambrian Research, 190(1/4): 70-89.

    • Cailteux J, Kampunzu A, Lerouge C, Kaputo A, Milesi J. 2005. Genesis of sediment-hosted stratiform copper-cobalt deposits, Central African Copperbelt[J]. Journal of African Earth Sciences, 42(1): 134-158.

    • Cailteux J, Kampunzu A, Lerouge C. 2007. The Neoproterozoic Mwashya-Kansuki sedimentary rock succession in the central African Copperbelt, its Cu-Co mineralisation, and regional correlations[J]. Gondwana Research, 11(3): 414-431.

    • Decrée S, Deloule E, Putter T, Dewaele S, Mees F, Yans J, Marignac C. 2011. SIMS U-Pb dating of uranium mineralization in the Katanga Copperbelt: Constraints for the geodynamic context[J]. Ore Geology Reviews, 40(1): 81-89.

    • Desouky H, Muchez P, Boyce A, Schneider J, Cailteux J, Dewaele S, Quadt A. 2010. Genesis of sediment-hosted stratiform copper-cobalt mineralization at Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo)[J]. Mineralium Deposita, 45(8): 735-763.

    • Desouky H, Muchez P, Cailteux J. 2009. Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo[J]. Ore Geology Reviews, 36(4): 315-332.

    • Gao B, Xie H, Ren J, Zhang Z, Ma H. 2024. Biomarker signatures and depositional environment of ore-bearing black shale in the Luishia Cu-Co deposit, Democratic Republic of Congo: Implications for regional copper mineralization[J]. Journal of African Earth Sciences, 213(1): 105-242.

    • Gilchrist G. 2019. Evolving estimation techniques for an evolving world class stratiform copper deposit at Kamoa-Kakula, Democratic Republic of the Congo[J]. In Mining goes Digital, 192-200.

    • Heijlen W, Banks D, Muchez P, Stensgard B, Yardley B. 2008. The Nature of mineralizing fluids of the Kipushi Zn-Cu deposit, Katanga, Democratic Repubic of Congo: Quantitative fluid inclusion analysis using Laser Ablation ICP-MS and bulk Crush-Leach methods[J]. Economic Geology, 103(7): 1459-1482.

    • Hendrickson M, Hitzman M, Wood D, Humphrey J, Wendlandt R. 2015. Geology of the Fishtie deposit, Central Province, Zambia: Iron oxide and copper mineralization in Nguba Group metasedimentary rocks[J]. Mineralium Deposita, 50(6): 717-737.

    • Hitzman M, Broughton D, Selley D, Woodhead J, Wood D, Bull S. 2012. The Central African Copperbelt: Diverse stratigraphic, structural, and temporal settings the world’s largest sedimentary copper district[C]// Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe. Society of Economic Geologists, 16: 487-514.

    • Hitzman M, Kirkham R, Broughton D, Thorson J, Selley D. 2005. The sediment-hosted stratiform copper ore system[C]// Economic Geology 100th Anniversary Volume. Society of Economic Geologists, 609-642.

    • Hnatyshin D, Tsuruoka S, Hitzman M, Creaser R. 2022. Cobalt mineralization age for the fishtie Cu-Co deposit in Zambia[C]// Goldschmidt 2022 Abstract, Honolulu.

    • Hoffmann K, Condon D, Bowring S, Crowley J. 2004. U-Pb zircon dates for the Neoproterozoic Ghaub Formation, Namibia: constraints on Marinoan glaciation[J]. Geology, 32(9): 817-820.

    • Ivanhoe Mines. 2016. Kamoa-Kakula Project now demonstrated to be the largest copper discovery ever made on the African continent[EB/OL]. 2024-05-30. https: //www. ivanhoemines. com/news-stories/news-release/kamoa-kakula-project-now-demonstrated-to-be- the-largest-copper-discovery-ever-made-on-the-african-continent.

    • Ivanhoe Mines. 2023. Ivanhoe Mines Reports Mineral Resources for Makoko and Kiala Discoveries in the Western Foreland[EB/OL]. 2024-05-30. https: //www. ivanhoemines. com/news-stories/news-release/ivanhoe-mines-reports-mineral-resources-for-makoko-and-kiala-discoveries-in-the-western-foreland.

    • Kampunzu A, Cailteux J, Moine B, Loris H. 2005. Geochemical characterisation, provenance, source and depositional environment of 'Roches Argilo-Talqueuses' (RAT) and mines subgroups sedimentary rocks in the Neoproterozoic Katangan Belt (Congo): Lithostratigraphic implications[J]. Journal of African Earth Sciences, 42(1): 119-133.

    • Kampunzu A, Cailteux J, Kamona A, Intiomale M, Melcher F. 2009. Sediment-hosted Zn–Pb–Cu deposits in the Central African Copperbelt[J]. Ore Geology Reviews, 35(3/4): 263-297.

    • Master S, Wendorff M. 2011. Neoproterozoic glaciogenic diamictites of the Katanga Supergroup, Central Africa[C]// The Geological Record of Neoproterozoic Glaciations. London: Geological Society, Memoirs, 36(1): 173-184.

    • Mfula C. 2024. Zambia's copper May rise to 1mt by 2026[J]. Australia's Paydirt, 1(326): 66.

    • Muchez P, André-Mayer A S, El Desouky H A, Reisberg L. 2015. Diagenetic origin of the stratiform Cu-Co deposit at Kamoto in the Central African Copperbelt[J]. Mineralium Deposita, 50(4): 437-447.

    • Porada H, Berhorst V. 2000. Towards a new understanding of the Neoproterozoic-Early Palaeozoic Lufilian and northern Zambezi Belts in Zambia and the Democratic Republic of Congo[J]. Journal of African Earth Sciences, 30(3): 727-771.

    • Schmandt D, Broughton D, Hitzman M, Plink-Bjorklund P, Edwards D, Humphrey J. 2013. The Kamoa copper deposit, Democratic Republic of Congo: Stratigraphy, diagenetic and hydrothermal alteration, and mineralization[J]. Economic Geology, 108(6): 1301-1324.

    • Schneider J, Melcher F, Brauns M. 2007. Concordant ages for the giant Kipushi base metal deposit (DR Congo) from direct Rb-Sr and Re-Os dating of sulfides[J]. Mineralium Deposita, 42(7): 791-797.

    • Selley D, Broughton D, Scott R, Hitzman M, Bull S, Large R, McGoldrick P, Croaker M, Pollington N, Barra F. 2005. A new look at the geology of the Zambian Copperbelt[J]. Economic Geology, 100: 965-1000.

    • Simusokwe M. 2021. Lithology, alteration and mineralization of the Fishtie Cu-Co deposit, Zambian Copperbelt[D]. Akita-ken: Akita University.

    • Su H M, Jiang S Y, Chi G X, Sheng T, Yin Y L, Liu T. 2024. Formation of the giant Luiswishi Cu-Co deposit in the Central African Copperbelt by Neoproterozoic syn-sedimentary-diagenetic processes overprinted by Pan-African orogenic mineralization events[J]. Precambrian Research, 402(4): 107-299.

    • Turner E, Broughton D, Brooks T. 2018. Neoproterozoic carbonate lithofacies and ore distribution at the Kipushi Cu-Zn deposit, Democratic Republic of Congo, and Gayna River Zn camp, northwest territories, Canada[J]. Economic Geology, 113(3): 779-788.

    • Turner E, Dabros Q, Broughton D, Kontak D. 2023. Textural and geochemical evidence for two-stage mineralisation at the Kamoa-Kakula Cu deposits, Central African Copperbelt[J]. Miner Deposita, 58(1): 825-832.

    • Twite F, Broughton D, Nex P, Kinnaird J, Gilchrist G, Edwards D. 2018. Lithostratigraphic and structural controls on sulphide mineralisation at the Kamoa copper deposit, Democratic Republic of Congo[J]. Journal of African Earth Sciences, 151(13): 212-224.

    • Wendorff M. 2005. Sedimentary genesis and lithostratigraphy of Neoproterozoic megabreccia from Mufulira, Copperbelt of Zambia[J]. Journal of African Earth Sciences, 42(1): 61-81.

    • Wendorff M, Key R. 2009. The relevance of the sedimentary history of the Grand Conglomerat Formation (Central Africa) to the interpretation of the climate during a major Cryogenian glacial event[J]. Precambrian Research, 172(1): 127-142.

    • Wilderode J, Heijlen W, Muynck D, Schneider J, Vanhaecke F, Muchez P. 2013. The Kipushi Cu-Zn deposit (DR Congo) and its host rocks: A petrographical, stable isotope (O, C) and radiogenic isotope (Sr, Nd) study[J]. Journal of African Earth Sciences, 79(1): 143-156.

    • 陈兴海, 刘运纪, 杨焱, 王纪昆, 贺云, 李天奇. 2012. 刚果(金)SICOMINES铜钴矿床地质特征及成因探讨[J]. 有色金属: 矿山部分, 64(6): 31-37.

    • 古阿雷, 王杰, 任军平, 左立波, 孙宏伟, 邢仕, 刘子江, Ezekiah C. 2020. 赞比亚中部泛非期Hook岩基地质特征及成矿潜力分析[J]. 地质调查与研究, 43(1): 63-71.

    • 李庆哲, 刘大文, 王京彬, 和志军. 2023. 中非铜钴成矿带地质特征及铜钴矿床资源量分析[J]. 地质与勘探, 59(2): 451-464.

    • 刘高杰, 王纪昆, 李松彬. 2021. 刚果(金)Dipeta铜钴矿床地质特征与找矿方向[J]. 矿产与地质, 35(1): 9-14.

    • 刘钧沅, 党伟民, 赵振华, 包久荣, 尹国庆, 杨远东, 刘高杰, 王建青, 洪文武, 李松彬, 柳海华, 董帅. 2023. 综合物探方法在中非加丹加铜钴矿带上的勘查效果分析[J]. 矿产勘查, 14(7): 1096-1105.

    • 卢宜冠, 涂家润, 孙凯, 覃鹏, 王华青, 何胜飞, 张航, 龚鹏辉, 郭硕, 方科, 和文言. 2021. 中非赞比亚成矿带谦比希铜钴矿床钴的赋存状态与成矿规律[J]. 地学前缘, 28(3): 338-354.

    • 孙宏伟, 王杰, 任军平, 唐文龙, 刘晓阳, 左立波, 古阿雷, 邢仕, 刘子江. 2019. 中非加丹加—赞比亚多金属成矿带成矿演化及找矿潜力分析[J]. 地质科技情报, 38(1): 121-131.

    • 唐菊兴, 王勤. 2019. 西藏铜矿资源优势及开发利用展望[J]. 中国工程科学, 21(1): 140-147.

    • 王幻, 曾瑞垠, 何海洋, 王新雨, 张志超, 闫鹏程, 郭建栋, 范姣. 2023. 中非铜(钴)成矿带构造地质特征及其控矿作用研究[J]. 矿产勘查, 14(11): 2125-2134.

    • 肖波, 覃鹏. 2019. 中部非洲卢富里安矿带中Kipushi锌-(铜)-铅矿地质特征[J]. 矿产与地质, 33(4): 623-627.

    • 曾瑞垠, 谭康雨, 黄建业, 张毅, 陈德稳, 詹勇, 董少波. 2021. 中非铜矿带多层位成矿特征及成因[J]. 矿产勘查, 12(1): 68-77.

    • 张楠. 2023 . 新能源产业发展背景下我国铜资源供需现状与趋势[J]. 中国矿业, 32(6): 2-9.