-
0 引言
-
土壤是人类赖以生存最基本的自然资源,也是保障陆地生态系统结构稳定和功能的核心部分。由于受到母岩(质)及地形地貌的影响,研究区燕山山地土壤具有粗骨性、薄层性、层次过渡不明等特点,垂向土壤厚度差异性和横向上土壤景观(成土母质类型、土壤类型等)的多样性,是燕山山地关键带空间异质性的两个重要表现(Anderson et al., 2007;李晓莎等,2018)。山区土壤作为地球关键带的核心部分,借助地球关键带研究有助于定量化描述土壤过程以及阐明环境变化影响土壤过程、功能及其演化。
-
风化作用是地球关键带形成的基础,直接影响着成土作用并控制着地球关键带的演化过程,具体表现为风化过程将风化前锋推入新鲜岩石中,不断改变关键带的物质组成,受母岩岩石的矿物组分、结构构造等影响,产生不同厚度的风化层及土壤层 (Anderson et al.,2011;Wilford and Thomas,2013),因此岩性是山地地球关键带形成及演化的主要影响因素之一,尤其是岩石矿物组成和土壤矿物组成的继承性和变异性研究有助于深入理解山地岩石风化与成土作用机理。
-
本文以燕山山地片麻岩为研究对象,分析在相同或相似气候条件下,岩石风化成土作用过程中母岩岩石化学特征、风化程度、质量损耗、土壤体积应变对地球关键带结构影响,研究岩性与地球关键带结构演化的耦合关系,建立了燕山山地片麻岩地球关键带垂向结构演化机制模式。
-
1 地质背景
-
研究区处于燕山山地东南段,发育一套太古界迁西群和遵化岩群的片麻岩,其原岩多为花岗岩及角闪岩等中酸性岩石。发育中山、低山和河谷等地貌类型,平均海拔300~400 m,以海拔1846 m的都山为最高点。属于暖温带半干旱半湿润季风性山地气候区,夏季高温多雨,冬季寒冷干燥。
-
2 样品采集与测试
-
2.1 样品采集与前处理
-
按照土壤层—风化层(母质层)—基岩层(母岩层)垂向剖面分别采集细粒角闪斜长片麻岩和粗粒黑云斜长片麻岩各 9 处,共采集样品 97 件,分别为46 件和 51 件。土壤、风化层样品按照 10 cm 或 20 cm的间隔采集,基岩样品为坚硬的未风化基岩。
-
2.2 测试分析
-
(1)土壤化学成分、岩石和土壤密度测试在华北地勘生态资源监测中心(河北)有限公司完成。 ①样品 SiO2、Ti、Al2O3、TFe2O3、Mn、MgO、CaO、Na2O、 K2O、P 和 S 采用波长色散 X 荧光光谱仪(帕纳科 AXiosMax-PW4400 型)测定;②岩体块体密度测试采用蜡封法;③土壤密度测试用环刀采集土壤样品烘干称重。
-
(2)岩石孔隙度和渗透率测试在北京克拉通岩创科技有限公司完成。岩石孔隙度和渗透率采用美国岩心公司Poro PDP-200覆压孔渗仪测试。
-
2.3 数据处理
-
2.3.1 风化程度计算
-
化学蚀变指数(CIA)用于定量评价风化壳形成和演化过程中硅酸盐组分的脱盐基程度,反映化学风化程度(Nesbitt and Young,1982)。CIA 越大,盐基淋失越多,风化程度越高:
-
式(1)中:各元素均为氧化物分子摩尔数,其中 CaO*仅为硅酸盐矿物中的摩尔含量,排除碳酸盐和磷酸盐中的 CaO 摩尔含量。 mCaOSi=mCaO-10/ 3*mP2O5,由于硅酸盐中的 CaO 与 Na2O 通常以 1∶1 的比例存在,因此按照CaOSi的摩尔数大于Na2O时, mCaO*=mNa2O,而小于 Na2O 时则 mCaO*=mCaOSi计算硅酸盐矿物中CaO的摩尔含量。
-
2.3.2 化学损耗计算
-
利用化学风化作用损失的总质量分数计算土壤的化学损耗分数(CDF),反映矿物溶解,反映整个土壤层的化学损失(Ferrier et al.,2016)。
-
CDF介于0(无风化)和1(完全岩石溶解)之间,如果在母岩向风化壳转变的过程中没有发生元素损失,则 CDF 为 0(Bouchez et al.,2013;Oeser et al.,2018)。
-
2.3.3 体积应变计算
-
应变体积系数 εi,w为土壤体积(Vw)与母岩体积 (Vp)的比值,评估风化成土过程中体积变化(Brimhall and Dietrich,1987;Buss et al.,2017):
-
式(3)中,ρp和 ρw为母岩(p)或土壤(w)的容重/ 密度(g/cm3),C 为稳定元素(Ti或 Zr等)的浓度(mg/ kg),本文以Ti作为稳定元素。正ε值表示土壤体积膨胀,零值表示土壤等体积变化,负ε值表示土壤体积压实。
-
3 结果
-
3.1 剖面特征
-
研究区片麻岩矿物成分复杂,抗风化能力降低,物理风化作用强于化学风化作用。野外调查发现,角闪斜长片麻岩母岩矿物颗粒较细,岩石密度增加,裂隙不发育,抗风化能力相对较高,风化壳顶部岩石结构一般完整,部分裂隙面呈褐色,处于中等、轻微的弱风化的状态,强风化层厚度多小于 50 cm,弱风化层厚度多小于1 m,风化层与土壤层的界面呈相对截然突变状态,土壤层厚度小于 20 cm(图1a,图1b)。黑云斜长片麻岩母岩黑云母矿物组分较多且颗粒粒径较大,其风化壳顶部岩石结构破坏,呈松散状完全风化状态,发育网脉状裂隙,呈褐土色,发育厚大的强风化层,强风化层厚度多大于1 m,弱风化层的厚度多大于 3 m,土壤层和风化层呈渐变特征,土壤层厚度大于20 cm(图1a,图1c)。
-
3.2 岩石化学特征
-
研究区片麻岩原岩主要为黑云母花岗岩、闪长岩等中酸性岩石,矿物成分主要为石英、斜长石和黑云母、角闪石等,中粗粒、细粒结构。黑云斜长片麻岩,岩石以中粗粒结构为主,矿物粒径较大(图2a,图2c);主要由斜长石(75%~80%)、石英(10%~15%)、黑云母(5%~10%)及角闪石(5%)组成。斜长石粒径0.5~2. 0 mm,角闪石粒径0.5~1. 0 mm,黑云母片径一般 0.5~1. 0 mm,石英呈他形粒状,粒径 0.5~2. 0 mm,部分 2~4 mm。角闪斜长片麻岩,岩石以中细粒结构为主,矿物颗粒小于黑云斜长片麻岩 (图2b,图2d);主要由斜长石(60%~65%)、角闪石 (25%~30%)、黑云母(5%)及透辉石(1%~5%)组成,斜长石粒径为 0.5~1. 0 mm,角闪石粒径 0.5~1. 0 mm、部分 1~2 mm,黑云母片径一般为 0.5~1. 0 mm,透辉石粒径0.5~1. 0 mm。受矿物组分的微小差异,研究区角闪斜长片麻岩、黑云斜长片麻岩之间化学元素含量差异明显。角闪斜长片麻岩 SiO2含量为 52.5%~59.6%,黑云斜长片麻岩的石英含量增加, SiO2含量为 57.1%~70.9%。同时,黑云斜长片麻岩母岩中铁、镁、钙含量明显小于角闪斜长片麻岩。
-
图1 燕山山地片麻岩风化壳的野外剖面变化特征
-
a—黑云斜长片麻岩中嵌入角闪斜长片麻岩;b—角闪斜长片麻岩风化特征;c—黑云斜长片麻岩风化特征
-
3.3 风化程度特征
-
角闪斜长片麻岩土壤CIA值为52.4~71.3,平均值为 65.4;风化层 CIA 值为 42.2~66.5,平均值为 57.7;黑云斜长片麻岩土壤 CIA 值 51.1~65.9,平均值为 61.4;风化层 CIA 值为 48.5~64.6,平均值为 55.4。片麻岩风化壳 CIA 值总体上小于 65,表明其处于低等的化学风化程度,但总体上角闪斜长片麻岩风化壳化学风化程度略高,推断与其基性斜长石和角闪石等易风化矿物含量较高以及颗粒较细、比表面积大有关。
-
3.4 化学损耗特征
-
角闪斜长片麻岩土壤 CDF 值为 0.132~0.543,平均值为0.324,中值为0.281。黑云斜长片麻岩土壤 CDF 值为 0.228~0.872,平均值为 0.442,中值为 0.425。总体上,由于母岩矿物组分中包含大量的石英、长石,风化产物多是难溶性石英和黏土矿物 (Hewawasam et al.,2013),CDF 总体上小于 0.5 且质量损失随深度变化幅度小,风化成土过程中元素损失量较少。角闪斜长片麻岩土壤 CDF 值小于黑云斜长片麻岩,其质量损失量小于后者。
-
3.5 体积应变特征
-
片麻岩岩石密度为 2.33~2.69 g/cm3,土壤 ε 值为-0.170~0.198,除个别样品 ε 值为-0.789 外,总体上大于0或约近似等于0,表明片麻岩成土作用过程中土壤体积主要呈等体积变化。风化壳在片麻岩上呈等体积发育,即土壤厚度相当于母质的初始厚度(White et al.,2005)。由于片麻岩多为中粗粒结构,由石英、斜长石、黑云母和角闪石组成,形成砂质土壤,具有与花岗岩年轻土壤相似的的典型特征,原生矿物风化或黏土转移较少(Wilson,2006)。
-
图2 燕山山地片麻岩类变质岩标本及镜下照片
-
a—黑云斜长片麻岩标本照片;b—角闪斜长片麻岩标本照片;c—黑云斜长片麻岩显微照片;d—角闪斜长片麻岩显微照片;Pl—斜长石;Bt—黑云母;Hb—角闪石;Q—石英
-
3.6 渗透性变化特征
-
根据密度和孔隙度测试结果显示,未风化的角闪斜长片麻岩岩石密度为 2.58~2.68 g/cm3,孔隙度为 5.97%~8.44%,渗透率为 0. 058~1.77 mD,而风化岩石的孔隙度为 12.2%~16.2%,渗透率为 5.39~8.91 mD;未风化黑云斜长片麻岩岩石密度为2.33~2.76 g/cm3,其中由于 JZ0061裂隙较发育,其岩石密度较低。孔隙度为 2.15%~4.48%,渗透率为 0.359~1.16 mD,而风化岩石的孔隙度为 5.77%~17.9%,渗透率为 12.3~770 mD。整体上,角闪斜长片麻岩初始孔隙度大于黑云斜长片麻岩,但二者初始渗透率相近,推断受初始孔隙度连通性影响。经过风化作用后,黑云斜长片麻岩风化岩石渗透率高于角闪斜长片麻岩,与黑云母丰度有关。
-
4 讨论
-
4.1 片麻岩裂隙对风化前锋的影响
-
风化作用形成大量的次生孔隙和裂缝(Molnar et al.,2007),为气体、水和生物的渗入、运移及化学风化的发生提供空间条件(徐则民等,2006),随着风化作用导致基岩矿物进一步溶解和分解,坚硬的基岩转化为风化岩石,将风化前锋传导至深处 (Fletcher and Brantley,2010;Graham et al.,2010; Jin et al.,2011)。研究表明,黑云母通过铁氧化膨胀和层间钾被其他水合阳离子替代扩张,在早阶段产生足以破裂岩石的应力(Shen et al.,2019),形成大量裂隙,促进反应流体的流通,可以减少岩石化学风化发生的时间约 10 倍(Rossi and Graham, 2010;Tian et al.,2019)。随着长石等矿物溶解,发育高岭石化、绢云母化等,形成石坑(Sak et al., 2010),次生孔隙的含量和数量逐渐增加,进一步促进基岩转化为风化壳(Smith,1962;Navarre-sitchler et al.,2011,2013)。研究区黑云斜长片麻岩中黑云母含量为 5%~10%,斜长角闪岩的黑云母含量小于5 %,导致前者裂隙发育程度和渗透率大于后者,风化深度增加,显示了黑云母含量增多对风化前锋推进的影响作用,与前人研究的结论一致(Tian et al., 2019)。
-
相应的裂隙的际长与开度越大,对化学风化的控制作用就越强(徐则民等,2006)。黑云斜长片麻岩,属于一种揉塑性变质岩,恢复原岩主要花岗质,由强烈塑性变形作用、变质作用和熔融作用形成动力变质构造岩(图3a~c),具有强塑性流变特征。岩石受到压性或压扭性断裂构造作用,发生柔性错动,发育波浪型、锯齿状的非贯通型节理。野外调查发现其地表以下 1~2 m 处,多发育张开型的节理裂隙,主要节理裂隙的密度较低,张开度多>3 mm,际长>50 cm,利于地表水和氧气的贯入,加快风化作用。随着风化作用持续进行,大量细粒黏土矿物和岩屑会贯入裂隙中,而5 m以下水的流通性降低,风化作用会降低,因此黑云斜长片麻岩的风化前锋平均深度 5 m。角闪斜长片麻岩属于硬脆性变质岩,原岩主要闪长质,在张性或张扭性断裂构造作用下,形成一定宽度的破碎带(图3c~f),仅在地表以下 0.5~1. 0 m 处发育张开型的节理裂隙,张开度多 >1 mm,际长<50 cm,际长较短,不利于地表水和氧气的贯入,风化作用明显减弱,因此角闪斜长岩的风化前锋平均深度为1 m。
-
图3 燕山山地片麻岩风化剖面裂隙分布特征
-
a—黑云斜长片麻岩风化剖面裂隙分布图;b—黑云斜长片麻岩风化剖面微观裂隙影像图;c—黑云斜长片麻岩显微特征;d—角闪斜长片麻岩风化剖面裂隙分布图;e—角闪斜长片麻岩风化剖面微观裂隙影像图;f—角闪斜长片麻岩显微特征;Pl—斜长石;Hb—角闪石;Bt—黑云母; Q—石英;Qr—钾长石
-
4.2 片麻岩矿物颗粒对关键带结构的影响
-
片麻岩风化过程所需的水量较少,较粗的矿物颗粒比表面积较低,基岩的物理崩解程度较高 (Wakatsuki et al.,2005;Gontier et al.,2015),流体反应物和矿物质之间的化学相互作用降低。相反,较细的矿物颗粒具较高的比表面积,且风化壳中流体迁移速度较慢,母岩化学风化作用较强,化学风化速率和风化程度会随着颗粒尺寸的减小而增加 (冯龙飞和葛梁,2022)。研究区角闪斜长片麻岩矿物颗粒小于黑云斜长片麻岩,因此化学风化程度较大,与前人结论一致。然而,黑云斜长片麻岩风化深度和土壤厚度大于角闪斜长片麻岩,与其较粗的矿物颗粒导致母岩物理崩解程度较高,进一步促进了母岩孔隙度和渗透率提升。降雨的土壤水更容易渗透到母岩深处,风化前锋继续向基岩方向深入,形成厚大的风化壳,导致黑云斜长片麻岩风化前锋可达到 5 m,强风化层可达 1 m,土壤平均厚度多大于 20 cm。相反,角闪斜长片麻岩风化后,渗透率小于黑云斜长片麻岩,土壤水分在渗透到更深的风化壳之前先蒸发,很少水分到达基岩,影响风化前锋的推进,风化前锋深度会缩减至1.5 m以内,平均土壤厚度多小于20 cm。
-
4.3 燕山山地片麻岩地球关键带结构演化模式
-
研究区包括细粒角闪斜长片麻岩和粗粒黑云斜长片麻岩,主要矿物成分为斜长石、角闪石、石英和黑云母等。基岩风化以物理风化作用为主,化学风化程度低等,总体上角闪斜长片麻岩化学风化程度大于黑云斜长片麻岩。两者具有相近的初始渗透率,但黑云斜长片麻岩风化成土过程中,较丰富的黑云母导致风化初始阶段通过铁氧化膨胀和层间钾被其他水合阳离子替代,产生足以破裂岩石的应力,形成大量裂隙,导致渗透率提高。此外,较粗的矿物颗粒大小比表面积较低,基岩的物理崩解程度较高,进一步促进黑云斜长片麻岩的孔隙度和渗透率提高,远远大于角闪斜长片麻岩。因此,角闪斜长片麻岩风化前锋深度减至 1.5 m 以内,平均土壤厚度多小于 20 cm(图4a),而黑云斜长片麻岩风化前锋可达到 5 m,强风化层可达 1 m,土壤平均厚度多大于20 cm(图4b)。
-
图4 燕山山地片麻岩地球关键带结构与演化模式
-
a—细粒角闪斜长片麻岩地球关键带;b—粗粒黑云斜长片麻岩地球关键带;CIA—风化指数;Ki—钾长石;Am—闪石;Cpx—单斜辉石;Q—石英;Pl—斜长石;Bt—黑云母;Ver—蛭石
-
5 结论
-
(1)研究区内片麻岩主要包括细粒角闪斜长片麻岩和粗粒黑云斜长片麻岩,主要成分为斜长石、角闪石、石英和黑云母等。前者石英和云母含量分别为 1%~2% 和 5%,SiO2 含量为 52.5%~59.6%;后者石英和云母含量分别为 10%~15% 和 5%~10%, SiO2含量为57.1%~70.9%,铁、镁、钙含量高。
-
(2)片麻岩类以物理风化作用为主,化学风化作用较弱,化学风化程度总体处于低等,岩性矿物组分和结构差异亦会影响其风化程度,角闪斜长片麻岩土壤层 CIA 平均值(65.4)高于黑云斜长片麻岩(61.4)。
-
(3)未风化的角闪斜长片麻岩的岩石孔隙度为 5.97%~8.44%,渗透率为 0. 058~1.77 mD,而风化岩石的孔隙度为 12.2%~16.2%,渗透率为 5.39~8.91 mD;未风化的黑云斜长片麻岩岩石孔隙度为 2.15%~4.48%,渗透率为 0.359~1.16 mD,而风化岩石的孔隙度为 5.77%~17.9%,渗透率为 12.3~770 mD。经过风化作用后,黑云斜长片麻岩岩石渗透率远高于角闪斜长片麻岩,推断与黑云斜长片麻岩中黑云母含量较高且矿物颗粒较大有关。角闪斜长片麻岩风化前锋深度减至 1.5 m 以内,平均土壤厚度多小于 20 cm,而黑云斜长片麻岩风化前锋可达到 5 m,强风化层可达 1 m,土壤平均厚度多大于20 cm。
-
参考文献
-
Anderson S P, Blanckenburg F V, White A F. 2007. Physical and chemical controls on the critical zone[J]. Elements, 3(5): 315‒319.
-
Anderson S P, Anderson R S, Hinckley E S, Kelly P, Blum A. 2011. Exploring weathering and regolith transport controls on Critical Zone development with models and natural experiments[J]. Applied Geochemistry, 26: S3‒S5.
-
Bouchez J, Blanckenburg F V, Schuessler J A. 2013. Modeling novel stable isotope ratios in the weathering zone[J]. American Journal of Science, 313(4): 267‒308.
-
Brimhall G H, Dietrich W E. 1987. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis[J]. Geochimica et Cosmochimica Acta, 51(3): 567‒587.
-
Buss H L, Lara M C, Moore O W, Kurtz A C, Schulz M S, White A F. 2017. Lithological influences on contemporary and long-term regolith weathering at the Luquillo critical zone observatory[J]. Geochimica et Cosmochimica Acta, 196: 224‒251.
-
Ferrier K L, Riebe C S, Jesse H W. 2016. Testing for supply-limited and kinetic-limited chemical erosion in field measurements of regolith production and chemical depletion[J]. Geochemistry, Geophysics, Geosystems, 17(6): 2270‒2285.
-
Fletcher R C, Brantley S L. 2010. Reduction of bedrock blocks as corestones in the weathering profile: Observations and model[J]. American Journal of Science, 310(3): 131‒164.
-
Gontier A, Rihs S, Chabaux F, Lemarchand D, Pelt E, Turpault M P. 2015. Lack of bedrock grain size influence on the soil production rate[J]. Geochimica et Cosmochimica Acta, 166: 146‒164.
-
Graham R, Rossi A, Hubbert R. 2010. Rock to regolith conversion: Producing hospitable substrates for terrestrial ecosystems[J]. GSA Today, 20: 4‒9.
-
Hewawasam T, Blanckenburg F V, Bouchez J, Dixon J L, Schuessler J A, Maekeler R. 2013. Slow advance of the weathering front during deep, supply-limited saprolite formation in the tropical highlands of Sri Lanka[J]. Geochimica et Cosmochimica Acta, 118(1): 202‒230.
-
Jin L X, Rother G, Cole D R, Mildner D F R, Duffy C J, Brantley S L. 2011. Characterization of deep weathering and nanoporosity development in shale—A neutron study[J]. American Mineralogist, 96(4): 498‒512.
-
Molnar P, Anderson R S, Anderson S P. 2007. Tectonics, fracturing of rock, and erosion[J]. Journal of Geophysical Research: Earth Surface, 112(F3): 14.
-
Navarre-Sitchler A K, Cole D R, Rother G, Jin L X, Buss H L, Brantley S L. 2013. Porosity and surface area evolution during weathering of two igneous rocks[J]. Geochimica et Cosmochimica Acta, 109(1): 400‒413.
-
Navarre-Sitchler A, Steefel C I, Sak P B, Brantley S L. 2011. A reactive-transport model for weathering rind formation on basalt[J]. Geochimica et Cosmochimica Acta, 75(23): 7644‒7667.
-
Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299(5885): 715‒717.
-
Oeser R A, Stroncik N, Moskwa L M, Bernhard N, Schaller M, Canessa R, Van den B L, Köster M, Brucker E, Stock S. 2018. Chemistry and microbiology of the critical zone along a steep climate and vegetation gradient in the Chilean Coastal Cordillera[J]. Catena, 170: 183‒203.
-
Rossi A M, Graham R C. 2010. Weathering and porosity formation in subsoil granitic clasts, Bishop Creek moraines, California[J]. Soil Science Society of America Journal, 74(1): 172‒185.
-
Sak P B, Navarre-Sitchler A K, Miller C E, Daniel C C, Gaillardet J, Buss H L, Lebedeva M I, Brantley S L. 2010. Controls on rind thickness on basaltic andesite clasts weathering in Guadeloupe[J]. Chemical Geology, 276(3/4): 129‒143.
-
Shen X D, Arson C, Ferrier K L, West N, Dai S. 2019. Mineral weathering and bedrock weakening: Modeling microscale bedrock damage under biotite weathering[J]. Journal of Geophysical Research: Earth Surface, 124(11): 2623‒2646.
-
Smith W W. 1962. Weathering of some Scottish basic igneous rocks with reference to soil formation[J]. Journal of Soil Science, 13(2): 202‒215.
-
Tian Z Y, Hartsough P C, O'Geen A T. 2019. Lithologic, climatic and depth controls on critical zone transformations[J]. Soil Science Society of America Journal, 83(2): 437‒447.
-
Wakatsuki T, Tanaka Y, Matsukura Y. 2005. Soil slips on weathering-limited slopes underlain by coarse-grained granite or fine-grained gneiss near Seoul, Republic of Korea[J]. Catena, 60(2): 181‒203.
-
White A F, Schulz M S, Vivit D V, Blum A E, Stonestrom D A, Harden J W. 2005. Chemical weathering rates of a soil chronosequence on granitic alluvium: III. Hydrochemical evolution and contemporary solute fluxes and rates[J]. Geochimica et Cosmochimica Acta, 69(8): 1975‒1996.
-
Wilford J, Thomas M. 2013. Predicting regolith thickness in the complex weathering setting of the central Mt Lofty Ranges, South Australia[J]. Geoderma, 206: 1‒13.
-
Wilson M J. 2006. Factors of Soil Formation: Parent Material. As Exemplified by A comparison of Granitic and Basaltic Soils. Soils: Basic Concepts and Future Challenges[M]. Cambridge: Cambridge University Press, 113‒129.
-
冯龙飞, 葛梁. 2022. 典型页岩地层高边坡支护工程设计实例[J]. 广东土木与建筑, 29(5): 60‒63.
-
李晓莎, 许中旗, 赵娱, 李校. 2018. 冀北山地干旱阳坡土壤厚度及土壤养分的空间异质性[J]. 河北农业大学学报, 41(1): 24‒30, 48.
-
徐则民, 黄润秋, 唐正光, 费维水. 2006. 岩体化学风化的非连续性及其科学意义[J]. 地球科学进展, 21(7): 706‒712, 767‒768.
-
摘要
山地地球关键带的形成和演化在不同空间尺度上受风化过程的控制。本文以细粒角闪斜长片麻岩和粗粒黑云斜长片麻岩为例,研究片麻岩地球关键带结构的演化过程,识别影响地球关键带垂向结构的主控因素。结果表明片麻岩的物理风化程度较高,化学风化程度低且细粒角闪斜长片麻岩化学风化程度相对较高,发育等体积风化,化学损耗低于0. 5。在风化成土过程中黑云母含量和矿物粒径影响风化程度,从而影响其地球关键带结构,风化初始阶段黑云母通过铁氧化和层间钾被其他水合阳离子替代而扩张,岩石破碎,形成大量裂隙,渗透率提高。粗矿物颗粒导致母岩比表面积较低,物理崩解程度较高,促进孔隙度和渗透率提高,因此粗粒黑云斜长片麻岩风化前锋可达到5 m,强风化层可达1 m,土壤平均厚度多大于 20 cm,而角闪斜长片麻岩风化前锋深度减至1. 5 m以内,平均土壤厚度多小于20 cm。该研究成果有助于认识山区土壤形成过程,为国土空间规划提供科学依据。
Abstract
The structure and evolution of the critical zones in the mountain were controlled by weathering on different spatial scales. In this paper, finer-grained hornblende-plagioclase gneisses and coarser-grained biotite-plagioclase gneisses have been taken as the research objects to study the evolution process of the critical zones in gneiss distributions and to identify the key factors influencing their vertical structures. It was manifested that physical weathering was the dominating type in gneisses, whose chemical weathering intensity of the soils was mainly low. In general, fine-grained hornblende-plagioclase gneiss was stronger weathered than coarse-grained biotite-plagioclase gneiss. According to strain factor, soils developed from gneisses were isovolumetric. Besides, CDF was mainly less than 0. 5. Weathering intensities were remarkably influenced by biotite contents and grains size of gneisses, so that controlled the structures of the critical zones. Expansion of biotite via Fe oxidation and interlayer replacement of K with other hydrated cations causes destabilization of rock. Microfractures develop both within and between mineral grains and the permeability increases. In addition, as the grain size of the materials resulting from weathering is coarser, the specific surface area of the minerals is smaller. These characteristics proceed their parent rocks’ high degree of physical disintegration and increased porosity and permeability. In conclusion, it was attributed to the more abundant biotite contents in biotite-plagioclase gneiss and its coarser grain size, so that the weathering front extended to 5 m below the surface, accompanied by strong-weathered layers being 1 m and soil thickness being over 20 cm. However, the weathering front of fine-grained hornblende-plagioclase gneiss is limited to 1. 5 m below the surface, accompanied by soil thickness of less than 20 cm. This research is conducive to our understand about the soil formation process in mountainous areas and provides scientific basis for territorial spatial planning.
Keywords
Yanshan mountain ; the critical zone ; rock weathering ; biotite ; grain size