en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。

引用本文: 赵路通,林亮华. 2025. 苏里南Saramacca金矿床地质和地球化学特征[J]. 矿产勘查,16(1):166-174.

Citation: Zhao Lutong, Lin Lianghua. 2025. Geological and geochemical characteristics of Saramacca gold deposit in Suriname[J]. Mineral Exploration, 16(1): 166-174.

作者简介:

赵路通,男,1983年生,高级工程师,从事矿产普查与勘探工作;E-mail: zhaolutong0123@163.com。

中图分类号:P548

文献标识码:A

文章编号:1674-7801(2025)01-0166-09

DOI:10.20008/j.kckc.202501015

参考文献
Abouchami W, Boher M, Michard A, Albarède F. 1990. A major 2. 1 Ga event ofmafic magmatism in West Africa: an early stage of crustal ac⁃ cretion[J]. Journal of Geophysical Research, 95 (B11): 17605-17629.
参考文献
Augustin J, Gaboury D. 2017. Paleoproterozoic plume-related basaltic rocks in the Mana gold district in western Burkina Faso, West Af⁃ rica: Implications for exploration and the source of gold in orogenic deposits[J]. Journal of African Earth Sciences, 129: 17-30.
参考文献
Barrett T J, MacLean W H. 1999. Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfidesystems[J]. Economic Geology, 8: 101-131.
参考文献
Bierlein F P, Groves D I, Goldfarb R J, Dube B. 2006. Lithospheric con⁃ trols on the formation of provinces hosting giant orogenic golddepos⁃ its[J]. Mineralium Deposita, 40: 874-886.
参考文献
Bierlein F P, Pisarevsky S. 2008. Plume-relatedoceanic plateaus as a potential source of gold mineralization[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 103: 425-430.
参考文献
Boher M, Abouchami W, Michard A, Albarède F, Arndt N. 1992. Crustal growthin West Africa at 2. 1 Ga[J]. Journal of Geophysical Research, 97: 345-369.
参考文献
Brandl P A, Regelous M, Beier C, Haase K M. 2013. High mantle tem⁃ peratures following rifting caused by continental insulation[J]. Na⁃ ture Geoscience, 6(5): 391-394.
参考文献
Condie K C. 1997. Contrasting sources for upper and lower continental crust: thegreenstone connection[J]. Journal of Geology, 105: 729-736.
参考文献
Condie K C. 1999. Mafic crustal xenoliths and the origin of the lower continentalcrust[J]. Lithos, 46: 95-101.
参考文献
Condie K C. 2005. High field strength element ratios in Archean basalts: a windowto evolving sources of mantle plumes[J]. Lithos, 79: 491-504.
参考文献
Davies G F. 2005. A case for mantle plumes[J]. Chinese Science Bulle⁃ tin, 50: 1541-1554.
参考文献
Daoust C, Voicu G, Brisson H, Gauthier M. 2011. Geological setting of the Paleoproterozoic Rosebel gold district, Guiana Shield, Suriname [J]. Journal of South American Earth Sciences, 32(3): 222-245.
参考文献
Delor C, Lahondère D, Egal E, Lafon Cocherie A, Guerrot C, Rossi P, Truf⁃ fet C, Theveniaut H, Phillips P, Avelar V G. 2003. Transamazonian crustal growthand reworking as revealed by the 1∶500000 scale geo⁃ logical map of FrenchGuiana[J]. Géologie de la France, 2/4: 5-57.
参考文献
Heydolph K, Murphy D T, Geldmacher J, Romanova I V, Greene A, Ho⁃ ernle K, Mahoney J. 2014. Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific): Insights from Nd, Pb and Hf isotopes[J]. Lithos, 200: 49-63.
参考文献
Kerrich R, Goldfarb R J, Groves D I, GarwinS. 2000. The geodynamics of world-classgold deposits; characteristics, space-time distribu⁃ tion, and origins[J]. Reviews in EconomicGeology, 13: 501-551.
参考文献
Kerr A C, Mahoney J J. 2007. Oceanic plateaus: Problematic plumes, po⁃ tentialparadigms[J]. Chemical Geology, 241: 332-353.
参考文献
Kioe-A-Sen N M, van Bergen M J, Wong T E, Kroonenberg S B. 2016. Gold deposits of Suriname: geological context, production and economic significance[J]. Netherlands Journal of Geosciences, 95(4): 429-445.
参考文献
Kroonenberg S B, De Roever E W F, Fraga L M, Reis N J, Faraco T, La⁃ fon J M, Cordani U, Wong T E. 2016. Paleoproterozoic evolution of the Guiana Shield in Suriname: A revised model[J]. Netherlands Journal of Geosciences, 95(4): 491-522.
参考文献
Lompo M. 2009. Geodynamic evolution of the 2. 25-2. 0 Ga Paleoprotero⁃ zoic magmatic rocks inthe Man-Leo Shield of the West African Cra⁃ ton. A model of subsidence of an oceanic plateau[J]. Geological So⁃ ciety, London, 323: 231-254.
参考文献
Milési J P, Egal E, Ledru P, Vernhet Y, Thiéblemont D, Cocherie A, Tegyey M, Martel-Jantin B, Lagny P. 1995. Les minéralisations du Nord de la GuyaneFranc¸ aise dans leur cadre géologique[J]. Chro⁃ nique de la Recherche Minière, 518: 5-58.
参考文献
McInnes B I A, McBride J S, Evans N J, Lambert D D, Andrew A S. 1999. Osmiumisotope constraints on ore metal recycling insub⁃ duction zones[J]. Science, 286: 512-516.
参考文献
Norcross C, Davis D W, Spooner E T C, Rust A. 2000. U-Pb and Pb-Pb age constraints on paleoproterozoic magmatism, deformation and gold mineralization in the omai area, guyana shield[J]. Precambrian Research, 102(1), 69-86.
参考文献
Panter K S, Blusztajn J, Hart S R, Kyle P R, Esser R, McIntosh W C. 2006. The origin of HIMU in the SW Pacific: evidence from intra⁃ plate volcanism in southern New Zealand and subantarctic islands [J]. Journal of Petrology, 47(9): 1673-1704.
参考文献
Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks de⁃ termined using trace element analyses[J]. Earth and Planetary⁃ Science Letters, 19(2): 290-300.
参考文献
Pouclet A, Vidal M, Delor C, Simeon Y, Alric G. 1996. Le volcanisme birimiendu nord-est de la Côte-d’Ivoire, mise en évidence de deux phases volcanotectoniquesdistinctes dans l’évolution géody⁃ namique du Paléoprotérozoique[J]. Bulletin de la Societe Géologique de France, 167(4): 529-541.
参考文献
Rogers N, Macdonald R, Fitton J G, George R, Smith M, Barreiro B. 2000. Two mantle plumes beneath the East African rift system: Sr, Nd and Pb isotope evidence from Kenya Rift basalts[J]. Earth and Planetary Science Letters, 176(3/4): 387-400.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics ofoce⁃ anic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345.
参考文献
Tang L, Santosh M. 2018. Neoarchean Granite⁃Greenstone Belts and Re⁃ lated Ore Mineralization in the North China Craton: An Overview [J]. Geoscience Frontiers, 9(3): 751-768.
参考文献
Vanderhaeghe O, Ledru P, Thiéblemont D, Egal E, Cocherie A, Tegyey M, Milési J P. 1998. Contrasting mechanism of crustal growth geo⁃ dynamic evolution of the Paleoproterozoic granite-greenstone belts of French Guiana[J]. PrecambrianResearch, 92: 165-193.
参考文献
Velásquez G, Béziat D, Salvi S, Tosiani T, Debat P. 2011. First occur⁃ rence of Paleoproterozoic oceanic plateau in the Guiana Shield: the gold-bearing El Callao Formation, Venezuela[J]. Precambrian Re⁃ search, 186(1/4): 181-192.
参考文献
Velásquez G, Béziat D, Salvi S, Siebenaller L, Borisova A Y, Pokrovski G S, De Parseval P. 2014. Formation and deformation of pyrite and implications for gold mineralization in the El Callao District, Ven⁃ ezuela[J]. Economic Geology, 109(2): 457-486.
参考文献
Voicu G, Bardoux M, Stevenson R. 2001. Lithostratigraphy, geochronol⁃ ogy andgold metallogeny in the northern Guiana Shield, South America: a review[J]. Ore Geology Reviews, 18: 211-236.
参考文献
Webber A P, Roberts S, Taylor R N, Pitcairn I K. 2013. Golden plumes: substantial golfenrichment of oceanic crust during ridge-plume in⁃ teraction[J]. Geology, 41: 87-90.
参考文献
Winchester J A, Floyd P A. 1977. Geochemical discrimination of differ⁃ ent magmaseries and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325-343.
参考文献
保善斌, 谈艳, 李嘉泰, 杨延乾, 张得鑫, 魏小林. 2019. 藏北猫耳山地区早二叠世岛弧玄武岩地球化学特征及构造意义[J]. 矿产勘查, 10(10): 2467-2474.
参考文献
陈大, 刘义 . 2012. 峨眉山玄武岩与铅锌成矿作用关系探讨[J]. 矿产勘查, 3(4): 469-475.
参考文献
王金荣, 陈万峰, 张旗, 焦守涛, 杨婧, 潘振杰, 王淑华 . 2017. NMORB 和 E-MORB 数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论[J]. 岩石学报, 33(3): 993-1005.
参考文献
徐义刚, 王强, 唐功建, 王军, 李洪颜, 周金胜, 李奇维, 齐玥, 刘平平, 马林, 范晶晶 . 2020. 弧玄武岩的成因: 进展与问题[J]. 中国科学: 地球科学, 50(12): 1818-1844.
目录contents

    摘要

    Saramacca大型造山型金矿床位于圭亚那地盾北部,矿体赋存于Marowijine绿岩带变质玄武岩中并受构造破碎带控制。本文对赋矿玄武质围岩开展的岩石地球化学研究表明,矿区玄武岩的K2O+N2O含量(1.83% ~4.28%)较低,N2O/K2O 为 2.0~263,相对富 Na 贫 K,MgO(5.08%~8.12%)含量中等,全铁(11.42%~ 13.75%)含量较高,属于高镁拉斑玄武岩。玄武岩具平坦的稀土元素配分模式,轻、重稀土分异较弱,总体上缺乏元素Eu、Sr、P、Ti和高场强元素Nb、Ta的亏损,与洋底高原玄武岩相似,Zr-Y-Nb-Th元素进一步构造判别显示矿区玄武岩源区与地幔柱有关。结合区域构造演化分析,矿区玄武岩形成于泛亚马逊造山期 D1阶段洋壳俯冲之前。与其他绿岩带中发育高原玄武岩的超大型Au矿集区比较可知,高Au含量的与地幔柱有关玄武岩的先期存在可能是这些地区发生超大规模Au富集成矿的重要原因之一。

    Abstract

    The Saramacca large orogenic gold deposit is located in the northern part of the Guyana Shield, where the ore body is hosted in metamorphic basalts of the Marowijine Greenstone Belt and is controlled by tectonic fracture zones. In this paper, the rock geochemical study of ore-bearing basaltic surrounding rocks shows that the content of K2O+N2O in the basalt in the mining area is low (1.83%-4.28%), N2O/K2O is ranged from 2.0 to 263, relatively rich in Na and poor in K, medium in MgO (5.08%-8.12%) and high in total iron (11.42%-13.75%), which belongs to high-magnesium tholeiite. Basalt has a flat distribution pattern of rare earth elements, with weak differentiation between light and heavy rare earth elements, and generally lacks the loss of elements Eu, Sr, P, Ti and high field strength elements Nb and Ta, which is similar to the basalt on the ocean floor plateau, further discrimination of Zr-Y-Nb-Th element structure shows that the source area of basalt in the mining area is related to mantle plume. Combined with the analysis of regional tectonic evolution, basalt in the mining area was formed before the subduction of oceanic crust in D1 stage of Pan-Asian Amazon orogeny. Compared with the super-large Au ore concentration areas where plateau basalts are developed in other greenstone belts, it can be seen that the pre-existence of basalts related to mantle plume with high Au content may be one of the important reasons for the super-large Au enrichment in these areas.

  • 0 引言

  • 南美洲圭亚那地盾(图1a)北部广泛分布由古元古代低级变质火山-沉积岩系组成的 Marowijine 绿岩带,其中产出有 Rosebel(148.7 t Au@0.98×10-6, IAMGOLD Corporation,2022)和 Merian(88.17 t Au@0.98×10-6,Newmont Mining Corporation,2018) 超大型矿床和 Sara Creek、Lely Mountains、Benzdorp 以及 Sela Creek 等众多中—小型造山型金矿床和矿点(Kioe-A-Sen et al.,2016),成矿条件优越,找矿潜力巨大。

  • Saramacca 金矿床位于 Resebel 金矿区西南约 25 km,是该区产于 Marowijine绿岩带变质玄武岩中的大型金矿床(49.55 t Au@1.87×10-6,IAMGOLD Corporation,2022)。本文在野外地质调查和矿床特征总结的基础上,通过对矿区玄武岩开展岩石地球化学研究,讨论其成因和构造环境,分析其对成矿作用的意义,为区域绿岩带中找矿勘查工作提供参考。

  • 图1 Saramacca金矿床大地构造位置图(a,据Daoust et al.,2011修改)和区域地质图(b,据IAMGOLD Corporation, 2022修改)

  • 1 区域地质特征

  • 圭亚那地盾北部地层主要为古元古界 Marowijine超群的火山-沉积绿岩序列及其上覆的 Rosebel 组碎屑沉积岩系(图1b)。其中Marowijine超群包括 Paramaka组和Armina组,Paramaka组下部主要由结晶基底的铁镁质变火山岩组成,岩性包括拉斑玄武岩、变玄武岩、变辉长岩和安山质火山岩,中间夹长英质片麻岩,上部为含铁锰的砂岩、云母片岩和含铝片麻岩。Armina 组主要为一套普遍发育交错层理、波痕及有韵律的递变层理等特征的浊积岩系,岩性包括片岩、千枚岩、砂岩、底砾岩夹石英岩、流纹岩、拉斑玄武岩和凝灰岩等,与下伏 Paramaka 组为不整合接触。Rosebel组主要为层状变粉砂岩、砂岩和砾岩,中间夹变火山岩。区域上地层在普遍经历长期化学风化后形成厚度十几米至几十米不等的红土层/残坡积层,局部可达到地面之下100 m。

  • 区域上侵入岩主要包括形成于泛亚马逊造山期的一系列 TTG 花岗质岩石(2.19~2.11 Ga,Milési et al.,1995)和二叠纪—三叠纪辉绿岩脉。右行的北苏里南剪切带(NSSZ,图1a)为区域上最重要的构造,其通常被认为是圭亚那中央剪切带(CGSZ)的分支,该断裂从西部 WNW-ESE 走向向东转为 NNW-SSE 向并最终与圭亚那中央剪切带的东段合并,其次级构造带控制了区域上金矿床的产出,如Resebel 金矿床和Merian金矿床。

  • 2 矿床地质特征

  • 2.1 矿区地质

  • Saramacca 金矿区出露地层为 Paramaka 组变质火山岩,主要岩性单元为块状玄武岩,上覆薄层杏仁状玄武岩和厚层状枕状玄武岩以及长英质凝灰岩(图2a),岩石均经历了绿片岩相变质作用。

  • 矿区玄武岩普遍呈发育隐晶质结构,主要由绿泥石、阳起石、斜长石和少量的绢云母/白云母组成。其中枕状玄武岩和块状玄武岩颜色介于中等绿色和深绿色之间,而杏仁状玄武岩由于强烈的蚀变作用其原岩(指绿片岩化后)颜色已难以辨别。枕状玄武岩中局部可观察到弱叶理发育,呈西北—东南走向,与区域构造结构平行,块状玄武岩仅在剪切矿脉附近可见微弱的叶理发育。杏仁状玄武岩中杏仁主要由石英填充,少量为石英-碳酸盐±绿泥石集合体,普遍发育压力影结构。长英质凝灰岩颜色介于浅绿色和浅灰绿色之间,隐晶质结构,局部可见次圆状石英和长石晶屑。

  • 图2 Saramacca金矿床Leapfrog地质模型(a)和地质剖面图(b)(据IAMGOLD Corporation,2022修编)

  • 矿区仅在局部钻孔中可见长英质岩脉侵入到块状玄武岩,岩脉呈米黄色,斑状结构,斑晶含量约 10%~15%,主要为石英和长石,两者含量相当,粒度介于细粒和中等粒之间。基质为隐晶质结构,多已蚀变为碳酸盐、绿泥石和绢云母。

  • 矿区主要发育北西向 Faya Bergi 脆-韧性陡倾断裂,沿较薄的杏仁状玄武岩发育(图2b),长度大于 5 km,主断裂带宽几米至 50 m 不等,带内角砾岩发育且具有重复的“裂缝/封闭”和膨胀充填构造特征。沿 Faya Bergi断裂两旁发育近平行的次级剪切带,整体上,枕状玄武岩中次级剪切带的发育要强于块状玄武岩。

  • 2.2 矿化特征

  • 矿区金矿化主要发育北西向Faya Berg断层(图2a),矿化厚度从几米到 50 m 不等,走向长 2.2 km,延深约 600 m。大多数高品位矿化位于主断裂带,通常位于含有黄铁矿和少量毒砂的白云岩化角砾岩中。尽管Faya Berg断层是连续的,但其中金矿化并不连续,矿体多呈垂直扁平的透镜体状。在枕状玄武岩内的次级剪切带内发育不连续的、近垂直的低品位矿化透镜体,并在矿床的北西和南东较为明显,在中心部位变薄(图2b)。

  • 矿石类型包括石英-碳酸盐脉型和构造蚀变角砾岩型,并以后者为主。石英-碳酸盐脉型矿石主要出现在玄武岩中,构造蚀变角砾岩型矿石主要沿 Faya Berg 断裂带分布。矿石矿物中金主要为自然金,硫化物以黄铁矿为主,少量为毒砂。金主要以充填物的形式充填于黄铁矿集合体的裂隙中,或以颗粒状分布在黄铁矿与脉石矿物相接触处,少量以包裹体形式发育在黄铁矿中。

  • 2.3 围岩蚀变

  • 矿区围岩蚀变类型主要包括代表区域绿片岩相的绿泥石-绿帘石-钠长石-阳起石蚀变矿物组合和反映热液矿化期的绿泥石-碳酸盐-云母-硅化-黄铁矿蚀变矿物组合。热液矿化蚀变在宏观上可通过围岩“漂白”(由中等绿色、深绿色→灰绿色→ 灰色、灰白色)识别(图3),一般情况下,从围岩向 Faya Bergi断裂带热液蚀变逐渐增强,但局部围岩中沿次级剪切带也会出现明显增强的线性“漂白”区域,反映出热液蚀变与构造的相关性。“漂白”是绿片岩相蚀变矿物被热液蚀变矿物交代所致,“漂白” 程度与热液蚀变程度呈正相关性,但与金矿化程度相关性不强,反映出热液活动可能具有多期次特点。在微观上,反射光谱分析表明,热液蚀变矿物的成分组合在空间上也表现出较明显的分带特征,即从围岩向 Faya Bergi 断裂带表现为:远端铁镁绿泥石-方解石-多硅白云母组合→中端铁镁绿泥石-方解石/白云石-白云母组合→近端铁绿泥石-铁白云石/菱铁矿-钠云母组合。硅化和黄铁矿化普遍发育,整体上沿断层/韧性剪切带最为发育。

  • 图3 Saramacca金矿床围岩蚀变特征

  • 3 采样及分析方法

  • 本次采集的样品来自 Saramacca 矿区 1700NW 和1500NW勘探线钻孔岩芯,选取蚀变较弱的岩石,采集枕状玄武岩和块状玄武岩样品各4件。样品长度为 10~20 cm,重量为 0.27~0.52 kg。全岩主元素、微量和稀土元素在苏里南的 Filab 实验室完成。主元素用 X 射线荧光光谱仪(飞利浦 PW2404)完成,其中 Al2O3、SiO2、MgO 和 Na2O 检测限为 0.015%, CaO、K2O 和 TiO2 检测限为 0.01%,TFe2O3、MnO 和 P2O5检测限为0.005%,FeO用容量法完成(检测限为 0.1%)。微量元素及稀土元素分析在德国Finnigan-MAT 公司生产的电感耦合等离子体质谱仪 (ELEMENT I)上完成,各元素分析精度均优于 3%。分析结果见表1。

  • 4 岩石地球化学特征

  • 4.1 主量元素特征

  • 分析结果表明,矿区玄武岩 SiO2 含量介于 46.42%~49.50%,属于玄武质岩石范围。 Al2O3 (13.11%~14.41%)和 P2O5 (0.08%~0.13%)含量较低,TiO2(0.86%~1.28%)、MgO(5.08%~8.12%)含量中等,全铁(11.42%~13.75%)含量较高。全碱含量 (1.83%~4.28%)较低,相对富Na2O(1.05%~4.01%)而贫 K2O(0.01%~0.53%)。在 Nb/Y-Zr/Ti 图解上 (图4a)落入亚碱性玄武岩范围,在 Zr-Y 图解(图4b)上落入拉斑玄武岩范围,在 AFM 图解(图4c)中落入高镁拉斑玄武岩范围。样品变化较大的K2O含量(0.01%~0.53%)和部分样品高烧失量(LOI >4%)反映了区域绿片岩相变质作用的影响。

  • 表1 Saramacca金矿床玄武岩主量(%)、微量元素(×10-6)分析结果

  • 续表1

  • 4.2 稀土和微量元素特征

  • 矿区块状和枕状玄武岩样品稀土元素总量分布在 154.7510-6~251.12×10-6,二者没有明显差异。在球粒陨石标准化稀土元素配分图解中(图5a),除一个块状玄武岩样品呈弱右倾的配分模式,轻、重稀土有明显分异外(La/Yb)N=2.43),其他样品均表现为平坦的稀土元素配分模式,轻、重稀土分异较弱(La/Yb)N=1.09~1.66)。所有样品均没有明显的Eu异常(δEu=0.95~1.06),显示斜长石的分离结晶作用不明显,与样品的隐晶质结构相一致。

  • 在原始地幔标准化不相容元素图解中(图5b),各样品的曲线总体表现出相互平行的趋势,Rb、Ba、 K、Sr等大离子亲石元素含量变化较大,可能与样品经历区域绿片岩相变质作用有关。所有样品的 Th/ Ta 比值均很低(1.03~2.60),总体上缺乏 Sr、P、Ti 和高场强元素Nb、Ta的亏损。

  • 5 讨论

  • 5.1 成因和构造背景分析

  • 前人研究认为圭亚那地盾区古元古界绿岩带中拉斑玄武岩可能形成于大洋中脊、洋底高原、弧后盆地、岛弧和地幔柱等多种构造环境(Milési et al.,1995Vanderhaeghe et al.,1998Voicu et al., 2001Delor et al.,2003Daoust et al.,2011Velásquez et al.,2011)。

  • 图4 Saramacca金矿床玄武岩(Nb/Y)-(Zr/Ti)(a,底图据Winchester and Floyd,1977)、Y-Zr(b,底图据Barrett and MacLean,1999)和Fe-Al-Mg(c,底图据Winchester and Floyd,1977)地球化学分类图

  • 图5 Saramacca金矿床玄武岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化蛛网图(标准化值据Sun and McDonough,1989;正常洋中脊和富集型洋中脊稀土元素值据王金荣等,2017;Rosebel玄武岩稀土和微量元素值据 Daoust et al.,2011

  • 系统对比 Rosebel 矿区玄武岩和本次研究玄武岩,二者在产出层位和地球化学特征上均较为一致,表明其应形成于相同的构造环境。在玄武岩 Zr-Y-Ti 图解中(图6a),Saramacca 矿区玄武岩和 Rosebel 矿区玄武岩均分布在洋中脊和岛弧拉斑玄武岩区域,Daoust et al(2011)认为其形成于弧后盆地环境。岛弧玄武质岩浆普遍具有低的 Nb含量(<2×10-6徐义刚等,2020),而 Saramacca 和 Rosebel 矿区玄武岩 Nb 含量均>2×10-6,在原始地幔标准化蛛网图中均不发育岛弧玄武质岩浆典型的Nb、Ta负异常,样品La/Nb比值介于0.96~1.39,小于岛弧玄武岩 (La/Nb>1.4)的特征(Condie,19971999),表明二者并非形成与岛弧相关环境。Saramacca和Rosebel矿区玄武岩均表现为平坦的稀土元素配分模式,介于正常洋中脊(N-MORB,亏损 LREE)和富集型洋中脊(E-MORB,富集 LREE)配分模式之间(图5a),在 Zr-Y-Ti 图解中(图6b),二者也主要分布于洋中脊玄武岩区域,均暗示其形成与洋中脊的相关性。

  • 图6 Saramacca金矿床玄武岩Ti-Zr-Y(a)和Ti-Zr-Sr(b)构造环境判别图解(底图据Pearce and Cann,1973

  • Saramacca和Rosebel矿区玄武岩平坦的稀土元素配分模式和微量元素缺乏Nb、Ta负异常的地球化学特征与洋底高原玄武岩相似(Abouchami et al., 1990Boher et al.,1992Pouclet et al.,1996Kerr and Mahoney,2007Lompo,2009)。洋底高原玄武岩大多具有E-MORB地球化学特征,通常被解释为富集 LREE 的洋岛玄武质岩浆与 N-MORB 源区(软流圈地幔)混合的结果(Davies,2005Rogers et al.,2000Panter et al.,2006Brandl et al.,2013Heydolph et al.,2014保善斌等,2019)。在 Zr/Nb-Nb/Th 和 Zr/ Y-Nb/Y图解中,Saramacca和Rosebel矿区玄武岩均落入洋底高原玄武岩范围,同时两个矿区玄武岩稀土元素配分模式介于E-MORB和N-MORB之间(图5a),也与洋底高原玄武岩混合源区来源的特征相一致,因此,本次研究认为Saramacca和Rosebel矿区玄武岩形成于洋底高原环境。

  • 区域上,苏里南Marowijine超群的火山-沉积绿岩带形成于 2.18~2.12 Ga(Norcross et al.,2000),是泛亚马逊造山期 D1阶段洋壳俯冲和随后西非克拉通与亚马逊克拉通南北向碰撞作用的结果 (Kroonenberg et al.,2011)。Saramacca 和 Rosebel 矿区之间,侵入Paramaka组的形成于俯冲构造背景的 TTG 深成侵入岩的 U-Pb 年龄为 2.19~2.11 Ga (Milési et al.,1995),表明Paramaka组玄武岩应形成于泛亚马逊造山期D1阶段洋壳俯冲之前,两个矿区玄武岩的 Nb/Th 比值在 7.95 和 17.32 之间,均>5,表明源区没有地壳和俯冲带物质的污染(Condie, 2005),与区域构造背景相一致。

  • 5.2 成矿作用意义

  • 产于前寒武纪绿片岩相地体里的造山型金矿由于其品位高并规模大,是全球金勘查的重要类型,而以镁铁质为主的变质火山岩则是该类造山型金矿成矿物质的主要源区(陈大和刘义,2012Tang and Santosh,2018),源岩中Au元素丰度越高,其在绿片岩相到角闪岩相的进变质过程中可被提取的 Au 总量越大,即具有更大的成矿潜力。

  • 近年来地幔柱岩浆作用与超大型金矿集区成因的联系逐渐受到学者们的重视(McInnes et al., 1999Bierlein and Pisarevsky,2008Kerrich et al.,2000Bierlein et al.,2006)。地幔柱岩浆起源于地幔更深的位置,因此具有更高的 Au 含量。Webber et al(2013)对冰岛地幔柱研究表明,受地幔柱中心影响的洋中脊玄武岩Au含量是普通洋中脊玄武岩Au 含量的 13 倍,并随着与地幔柱中心距离的增加,降低为 3~5倍。Saramacca 和 Rosebel 矿区洋底高原玄武岩在 Zr/Nb-Nb/Th 和 Zr/Y-Nb/Y 图解中分布在原始地幔(PM)附近,表明其岩浆源区也与地幔柱岩浆有关。与此类似,在前寒武纪绿岩带中,洋底高原玄武岩还见于圭亚那地盾 Guasipati-El Callao 绿岩带 El Callao(740 t Au,Velásquez et al.,2014)和西非地盾 Houndé 绿岩带 Mana(311 t Au,Augustin and Gaboury,2017)两个超大型金矿集区。在Zr/Nb-Nb/ Th 和 Zr/Y-Nb/Y 图解中(图7),这两个金矿区玄武岩亦均分布在 PM 附近,与地幔柱岩浆快速侵位上升有关(Velásquez et al.,2011Augustin and Gaboury,2017)。综上所述,这些矿集区内具有高 Au 含量的与地幔柱有关高原玄武质岩浆的先期赋存可能是其发生超大规模 Au富集成矿的重要原因之一。

  • 图7 Saramacca金矿床玄武岩Nb-Th-Zr(a)和Zr-Zr-Nb(b)构造环境判别图解(底图据Condie,2005

  • DM—浅层亏损地幔;EN—富集组分;PM—原始地幔;REC—循环组分;UC—上地壳;DEP—亏损地幔柱组分;HIMU—高μ(U/Pb)组分;EM1和 EM2—富集地幔组分

  • 6 结论

  • (1)Saramacca矿区玄武岩属于高镁拉斑玄武岩系列,以平坦的稀土元素配分模式和微量元素不发育Nb、Ta异常为特点。

  • (2)Saramacca矿区玄武岩其岩浆来源于与地幔柱有关的洋底高原环境,形成于泛跨亚马逊造山期 D1阶段洋壳俯冲之前。

  • (3)绿岩带中超大型 Au 矿集区内具有高 Au 含量的与地幔柱有关玄武岩的先期赋存可能是其发生超大型Au富集成矿的重要原因之一。

  • 致谢  野外工作得到了苏里南罗斯贝尔金矿有限责任公司的高级地质师 Sabrina Beek 和 Shequille Parisius协助,审稿专家对于本文的修改提出了众多富有建设性的意见,在此一并表示衷心的感谢!

  • 注释

  • ① IAMGOLD Corporation.2022. Technical report on the Saramacca gold mine, Suriname[R].

  • ② NewmontMining Corporation.2018. Technical report on the Merian Operationsin the Republic of Suriname[R].

  • 参考文献

    • Abouchami W, Boher M, Michard A, Albarède F. 1990. A major 2. 1 Ga event ofmafic magmatism in West Africa: an early stage of crustal ac⁃ cretion[J]. Journal of Geophysical Research, 95 (B11): 17605-17629.

    • Augustin J, Gaboury D. 2017. Paleoproterozoic plume-related basaltic rocks in the Mana gold district in western Burkina Faso, West Af⁃ rica: Implications for exploration and the source of gold in orogenic deposits[J]. Journal of African Earth Sciences, 129: 17-30.

    • Barrett T J, MacLean W H. 1999. Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfidesystems[J]. Economic Geology, 8: 101-131.

    • Bierlein F P, Groves D I, Goldfarb R J, Dube B. 2006. Lithospheric con⁃ trols on the formation of provinces hosting giant orogenic golddepos⁃ its[J]. Mineralium Deposita, 40: 874-886.

    • Bierlein F P, Pisarevsky S. 2008. Plume-relatedoceanic plateaus as a potential source of gold mineralization[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 103: 425-430.

    • Boher M, Abouchami W, Michard A, Albarède F, Arndt N. 1992. Crustal growthin West Africa at 2. 1 Ga[J]. Journal of Geophysical Research, 97: 345-369.

    • Brandl P A, Regelous M, Beier C, Haase K M. 2013. High mantle tem⁃ peratures following rifting caused by continental insulation[J]. Na⁃ ture Geoscience, 6(5): 391-394.

    • Condie K C. 1997. Contrasting sources for upper and lower continental crust: thegreenstone connection[J]. Journal of Geology, 105: 729-736.

    • Condie K C. 1999. Mafic crustal xenoliths and the origin of the lower continentalcrust[J]. Lithos, 46: 95-101.

    • Condie K C. 2005. High field strength element ratios in Archean basalts: a windowto evolving sources of mantle plumes[J]. Lithos, 79: 491-504.

    • Davies G F. 2005. A case for mantle plumes[J]. Chinese Science Bulle⁃ tin, 50: 1541-1554.

    • Daoust C, Voicu G, Brisson H, Gauthier M. 2011. Geological setting of the Paleoproterozoic Rosebel gold district, Guiana Shield, Suriname [J]. Journal of South American Earth Sciences, 32(3): 222-245.

    • Delor C, Lahondère D, Egal E, Lafon Cocherie A, Guerrot C, Rossi P, Truf⁃ fet C, Theveniaut H, Phillips P, Avelar V G. 2003. Transamazonian crustal growthand reworking as revealed by the 1∶500000 scale geo⁃ logical map of FrenchGuiana[J]. Géologie de la France, 2/4: 5-57.

    • Heydolph K, Murphy D T, Geldmacher J, Romanova I V, Greene A, Ho⁃ ernle K, Mahoney J. 2014. Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific): Insights from Nd, Pb and Hf isotopes[J]. Lithos, 200: 49-63.

    • Kerrich R, Goldfarb R J, Groves D I, GarwinS. 2000. The geodynamics of world-classgold deposits; characteristics, space-time distribu⁃ tion, and origins[J]. Reviews in EconomicGeology, 13: 501-551.

    • Kerr A C, Mahoney J J. 2007. Oceanic plateaus: Problematic plumes, po⁃ tentialparadigms[J]. Chemical Geology, 241: 332-353.

    • Kioe-A-Sen N M, van Bergen M J, Wong T E, Kroonenberg S B. 2016. Gold deposits of Suriname: geological context, production and economic significance[J]. Netherlands Journal of Geosciences, 95(4): 429-445.

    • Kroonenberg S B, De Roever E W F, Fraga L M, Reis N J, Faraco T, La⁃ fon J M, Cordani U, Wong T E. 2016. Paleoproterozoic evolution of the Guiana Shield in Suriname: A revised model[J]. Netherlands Journal of Geosciences, 95(4): 491-522.

    • Lompo M. 2009. Geodynamic evolution of the 2. 25-2. 0 Ga Paleoprotero⁃ zoic magmatic rocks inthe Man-Leo Shield of the West African Cra⁃ ton. A model of subsidence of an oceanic plateau[J]. Geological So⁃ ciety, London, 323: 231-254.

    • Milési J P, Egal E, Ledru P, Vernhet Y, Thiéblemont D, Cocherie A, Tegyey M, Martel-Jantin B, Lagny P. 1995. Les minéralisations du Nord de la GuyaneFranc¸ aise dans leur cadre géologique[J]. Chro⁃ nique de la Recherche Minière, 518: 5-58.

    • McInnes B I A, McBride J S, Evans N J, Lambert D D, Andrew A S. 1999. Osmiumisotope constraints on ore metal recycling insub⁃ duction zones[J]. Science, 286: 512-516.

    • Norcross C, Davis D W, Spooner E T C, Rust A. 2000. U-Pb and Pb-Pb age constraints on paleoproterozoic magmatism, deformation and gold mineralization in the omai area, guyana shield[J]. Precambrian Research, 102(1), 69-86.

    • Panter K S, Blusztajn J, Hart S R, Kyle P R, Esser R, McIntosh W C. 2006. The origin of HIMU in the SW Pacific: evidence from intra⁃ plate volcanism in southern New Zealand and subantarctic islands [J]. Journal of Petrology, 47(9): 1673-1704.

    • Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks de⁃ termined using trace element analyses[J]. Earth and Planetary⁃ Science Letters, 19(2): 290-300.

    • Pouclet A, Vidal M, Delor C, Simeon Y, Alric G. 1996. Le volcanisme birimiendu nord-est de la Côte-d’Ivoire, mise en évidence de deux phases volcanotectoniquesdistinctes dans l’évolution géody⁃ namique du Paléoprotérozoique[J]. Bulletin de la Societe Géologique de France, 167(4): 529-541.

    • Rogers N, Macdonald R, Fitton J G, George R, Smith M, Barreiro B. 2000. Two mantle plumes beneath the East African rift system: Sr, Nd and Pb isotope evidence from Kenya Rift basalts[J]. Earth and Planetary Science Letters, 176(3/4): 387-400.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics ofoce⁃ anic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345.

    • Tang L, Santosh M. 2018. Neoarchean Granite⁃Greenstone Belts and Re⁃ lated Ore Mineralization in the North China Craton: An Overview [J]. Geoscience Frontiers, 9(3): 751-768.

    • Vanderhaeghe O, Ledru P, Thiéblemont D, Egal E, Cocherie A, Tegyey M, Milési J P. 1998. Contrasting mechanism of crustal growth geo⁃ dynamic evolution of the Paleoproterozoic granite-greenstone belts of French Guiana[J]. PrecambrianResearch, 92: 165-193.

    • Velásquez G, Béziat D, Salvi S, Tosiani T, Debat P. 2011. First occur⁃ rence of Paleoproterozoic oceanic plateau in the Guiana Shield: the gold-bearing El Callao Formation, Venezuela[J]. Precambrian Re⁃ search, 186(1/4): 181-192.

    • Velásquez G, Béziat D, Salvi S, Siebenaller L, Borisova A Y, Pokrovski G S, De Parseval P. 2014. Formation and deformation of pyrite and implications for gold mineralization in the El Callao District, Ven⁃ ezuela[J]. Economic Geology, 109(2): 457-486.

    • Voicu G, Bardoux M, Stevenson R. 2001. Lithostratigraphy, geochronol⁃ ogy andgold metallogeny in the northern Guiana Shield, South America: a review[J]. Ore Geology Reviews, 18: 211-236.

    • Webber A P, Roberts S, Taylor R N, Pitcairn I K. 2013. Golden plumes: substantial golfenrichment of oceanic crust during ridge-plume in⁃ teraction[J]. Geology, 41: 87-90.

    • Winchester J A, Floyd P A. 1977. Geochemical discrimination of differ⁃ ent magmaseries and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325-343.

    • 保善斌, 谈艳, 李嘉泰, 杨延乾, 张得鑫, 魏小林. 2019. 藏北猫耳山地区早二叠世岛弧玄武岩地球化学特征及构造意义[J]. 矿产勘查, 10(10): 2467-2474.

    • 陈大, 刘义 . 2012. 峨眉山玄武岩与铅锌成矿作用关系探讨[J]. 矿产勘查, 3(4): 469-475.

    • 王金荣, 陈万峰, 张旗, 焦守涛, 杨婧, 潘振杰, 王淑华 . 2017. NMORB 和 E-MORB 数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论[J]. 岩石学报, 33(3): 993-1005.

    • 徐义刚, 王强, 唐功建, 王军, 李洪颜, 周金胜, 李奇维, 齐玥, 刘平平, 马林, 范晶晶 . 2020. 弧玄武岩的成因: 进展与问题[J]. 中国科学: 地球科学, 50(12): 1818-1844.

图1 Saramacca金矿床大地构造位置图(a,据Daoust et al.,2011修改)和区域地质图(b,据IAMGOLD Corporation, 2022修改)
图2 Saramacca金矿床Leapfrog地质模型(a)和地质剖面图(b)(据IAMGOLD Corporation,2022修编)
图3 Saramacca金矿床围岩蚀变特征
图4 Saramacca金矿床玄武岩(Nb/Y)-(Zr/Ti)(a,底图据Winchester and Floyd,1977)、Y-Zr(b,底图据Barrett and MacLean,1999)和Fe-Al-Mg(c,底图据Winchester and Floyd,1977)地球化学分类图
图5 Saramacca金矿床玄武岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化蛛网图(标准化值据Sun and McDonough,1989;正常洋中脊和富集型洋中脊稀土元素值据王金荣等,2017;Rosebel玄武岩稀土和微量元素值据 Daoust et al.,2011
图6 Saramacca金矿床玄武岩Ti-Zr-Y(a)和Ti-Zr-Sr(b)构造环境判别图解(底图据Pearce and Cann,1973
图7 Saramacca金矿床玄武岩Nb-Th-Zr(a)和Zr-Zr-Nb(b)构造环境判别图解(底图据Condie,2005
表1 Saramacca金矿床玄武岩主量(%)、微量元素(×10-6)分析结果

相似文献

  • 参考文献

    • Abouchami W, Boher M, Michard A, Albarède F. 1990. A major 2. 1 Ga event ofmafic magmatism in West Africa: an early stage of crustal ac⁃ cretion[J]. Journal of Geophysical Research, 95 (B11): 17605-17629.

    • Augustin J, Gaboury D. 2017. Paleoproterozoic plume-related basaltic rocks in the Mana gold district in western Burkina Faso, West Af⁃ rica: Implications for exploration and the source of gold in orogenic deposits[J]. Journal of African Earth Sciences, 129: 17-30.

    • Barrett T J, MacLean W H. 1999. Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfidesystems[J]. Economic Geology, 8: 101-131.

    • Bierlein F P, Groves D I, Goldfarb R J, Dube B. 2006. Lithospheric con⁃ trols on the formation of provinces hosting giant orogenic golddepos⁃ its[J]. Mineralium Deposita, 40: 874-886.

    • Bierlein F P, Pisarevsky S. 2008. Plume-relatedoceanic plateaus as a potential source of gold mineralization[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 103: 425-430.

    • Boher M, Abouchami W, Michard A, Albarède F, Arndt N. 1992. Crustal growthin West Africa at 2. 1 Ga[J]. Journal of Geophysical Research, 97: 345-369.

    • Brandl P A, Regelous M, Beier C, Haase K M. 2013. High mantle tem⁃ peratures following rifting caused by continental insulation[J]. Na⁃ ture Geoscience, 6(5): 391-394.

    • Condie K C. 1997. Contrasting sources for upper and lower continental crust: thegreenstone connection[J]. Journal of Geology, 105: 729-736.

    • Condie K C. 1999. Mafic crustal xenoliths and the origin of the lower continentalcrust[J]. Lithos, 46: 95-101.

    • Condie K C. 2005. High field strength element ratios in Archean basalts: a windowto evolving sources of mantle plumes[J]. Lithos, 79: 491-504.

    • Davies G F. 2005. A case for mantle plumes[J]. Chinese Science Bulle⁃ tin, 50: 1541-1554.

    • Daoust C, Voicu G, Brisson H, Gauthier M. 2011. Geological setting of the Paleoproterozoic Rosebel gold district, Guiana Shield, Suriname [J]. Journal of South American Earth Sciences, 32(3): 222-245.

    • Delor C, Lahondère D, Egal E, Lafon Cocherie A, Guerrot C, Rossi P, Truf⁃ fet C, Theveniaut H, Phillips P, Avelar V G. 2003. Transamazonian crustal growthand reworking as revealed by the 1∶500000 scale geo⁃ logical map of FrenchGuiana[J]. Géologie de la France, 2/4: 5-57.

    • Heydolph K, Murphy D T, Geldmacher J, Romanova I V, Greene A, Ho⁃ ernle K, Mahoney J. 2014. Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific): Insights from Nd, Pb and Hf isotopes[J]. Lithos, 200: 49-63.

    • Kerrich R, Goldfarb R J, Groves D I, GarwinS. 2000. The geodynamics of world-classgold deposits; characteristics, space-time distribu⁃ tion, and origins[J]. Reviews in EconomicGeology, 13: 501-551.

    • Kerr A C, Mahoney J J. 2007. Oceanic plateaus: Problematic plumes, po⁃ tentialparadigms[J]. Chemical Geology, 241: 332-353.

    • Kioe-A-Sen N M, van Bergen M J, Wong T E, Kroonenberg S B. 2016. Gold deposits of Suriname: geological context, production and economic significance[J]. Netherlands Journal of Geosciences, 95(4): 429-445.

    • Kroonenberg S B, De Roever E W F, Fraga L M, Reis N J, Faraco T, La⁃ fon J M, Cordani U, Wong T E. 2016. Paleoproterozoic evolution of the Guiana Shield in Suriname: A revised model[J]. Netherlands Journal of Geosciences, 95(4): 491-522.

    • Lompo M. 2009. Geodynamic evolution of the 2. 25-2. 0 Ga Paleoprotero⁃ zoic magmatic rocks inthe Man-Leo Shield of the West African Cra⁃ ton. A model of subsidence of an oceanic plateau[J]. Geological So⁃ ciety, London, 323: 231-254.

    • Milési J P, Egal E, Ledru P, Vernhet Y, Thiéblemont D, Cocherie A, Tegyey M, Martel-Jantin B, Lagny P. 1995. Les minéralisations du Nord de la GuyaneFranc¸ aise dans leur cadre géologique[J]. Chro⁃ nique de la Recherche Minière, 518: 5-58.

    • McInnes B I A, McBride J S, Evans N J, Lambert D D, Andrew A S. 1999. Osmiumisotope constraints on ore metal recycling insub⁃ duction zones[J]. Science, 286: 512-516.

    • Norcross C, Davis D W, Spooner E T C, Rust A. 2000. U-Pb and Pb-Pb age constraints on paleoproterozoic magmatism, deformation and gold mineralization in the omai area, guyana shield[J]. Precambrian Research, 102(1), 69-86.

    • Panter K S, Blusztajn J, Hart S R, Kyle P R, Esser R, McIntosh W C. 2006. The origin of HIMU in the SW Pacific: evidence from intra⁃ plate volcanism in southern New Zealand and subantarctic islands [J]. Journal of Petrology, 47(9): 1673-1704.

    • Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks de⁃ termined using trace element analyses[J]. Earth and Planetary⁃ Science Letters, 19(2): 290-300.

    • Pouclet A, Vidal M, Delor C, Simeon Y, Alric G. 1996. Le volcanisme birimiendu nord-est de la Côte-d’Ivoire, mise en évidence de deux phases volcanotectoniquesdistinctes dans l’évolution géody⁃ namique du Paléoprotérozoique[J]. Bulletin de la Societe Géologique de France, 167(4): 529-541.

    • Rogers N, Macdonald R, Fitton J G, George R, Smith M, Barreiro B. 2000. Two mantle plumes beneath the East African rift system: Sr, Nd and Pb isotope evidence from Kenya Rift basalts[J]. Earth and Planetary Science Letters, 176(3/4): 387-400.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics ofoce⁃ anic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345.

    • Tang L, Santosh M. 2018. Neoarchean Granite⁃Greenstone Belts and Re⁃ lated Ore Mineralization in the North China Craton: An Overview [J]. Geoscience Frontiers, 9(3): 751-768.

    • Vanderhaeghe O, Ledru P, Thiéblemont D, Egal E, Cocherie A, Tegyey M, Milési J P. 1998. Contrasting mechanism of crustal growth geo⁃ dynamic evolution of the Paleoproterozoic granite-greenstone belts of French Guiana[J]. PrecambrianResearch, 92: 165-193.

    • Velásquez G, Béziat D, Salvi S, Tosiani T, Debat P. 2011. First occur⁃ rence of Paleoproterozoic oceanic plateau in the Guiana Shield: the gold-bearing El Callao Formation, Venezuela[J]. Precambrian Re⁃ search, 186(1/4): 181-192.

    • Velásquez G, Béziat D, Salvi S, Siebenaller L, Borisova A Y, Pokrovski G S, De Parseval P. 2014. Formation and deformation of pyrite and implications for gold mineralization in the El Callao District, Ven⁃ ezuela[J]. Economic Geology, 109(2): 457-486.

    • Voicu G, Bardoux M, Stevenson R. 2001. Lithostratigraphy, geochronol⁃ ogy andgold metallogeny in the northern Guiana Shield, South America: a review[J]. Ore Geology Reviews, 18: 211-236.

    • Webber A P, Roberts S, Taylor R N, Pitcairn I K. 2013. Golden plumes: substantial golfenrichment of oceanic crust during ridge-plume in⁃ teraction[J]. Geology, 41: 87-90.

    • Winchester J A, Floyd P A. 1977. Geochemical discrimination of differ⁃ ent magmaseries and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325-343.

    • 保善斌, 谈艳, 李嘉泰, 杨延乾, 张得鑫, 魏小林. 2019. 藏北猫耳山地区早二叠世岛弧玄武岩地球化学特征及构造意义[J]. 矿产勘查, 10(10): 2467-2474.

    • 陈大, 刘义 . 2012. 峨眉山玄武岩与铅锌成矿作用关系探讨[J]. 矿产勘查, 3(4): 469-475.

    • 王金荣, 陈万峰, 张旗, 焦守涛, 杨婧, 潘振杰, 王淑华 . 2017. NMORB 和 E-MORB 数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论[J]. 岩石学报, 33(3): 993-1005.

    • 徐义刚, 王强, 唐功建, 王军, 李洪颜, 周金胜, 李奇维, 齐玥, 刘平平, 马林, 范晶晶 . 2020. 弧玄武岩的成因: 进展与问题[J]. 中国科学: 地球科学, 50(12): 1818-1844.